Gradual evolution of allopolyploidy in Arabidopsis suecica

Burns R, Mandáková T, Jagoda J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PYu, Nordborg M



The majority of diploid organisms have polyploid ancestors. The evolutionary process of polyploidization (and subsequent re-diploidization) is poorly understood, but has frequently been conjectured to involve some form of “genome shock” — partly inspired by studies in crops, where polyploidy has been linked to major genomic changes such as genome reorganization and subgenome expression dominance. It is unclear, however, whether such dramatic changes would be characteristic of natural polyploidization, or whether they are a product of domestication. Here, we study polyploidization in Arabidopsis suecica (n = 13), a post-glacial allopolyploid species formed via hybridization of A. thaliana (n = 5) and A. arenosa (n = 8). We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from multiple individuals of all species. Despite a divergence of ∼6 Mya between the two ancestral species and appreciable differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is highly colinear with the ancestral genomes, there is no subgenome dominance in expression, and transposable element dynamics appear to be stable. We do, however, find strong evidence for changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly in order to prevent aneuploidy and undesirable homeologous exchanges that are frequently observed in experimentally generated A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear related processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana.