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Abstract Mountains form a diverse mosaic of microhabitats over small distances created by changes in climate, soil, and water avail-
ability. A key to adaptation of plants to such microhabitats is genetic variation; however, natural accumulation of genetic variation
through mutation is slow and often not sufficient alone. Adaptive introgression via hybridization is an alternative to generate genetic
variation. Here, we investigate hybridization and discuss its adaptive role in Veronica subg. Pseudolysimachium at their Altai Moun-
tains distribution. To support our hypotheses of frequent hybridization, we genotyped thousands of SNPs for 233 individuals from
10 species and 7 putative hybrids previously described based on morphology. We employed Bayesian and likelihood statistical
models and supported our results bymorphometric analysis and genomic in situ hybridization (GISH). The results suggest that almost
all the individuals of the putative hybrids are of F1 type. The GISH investigation in one case strongly supports homoploid hybridiza-
tion (origin of V. ×schmakovii from V. longifolia and V. porphyriana. Divergence times of Altai Veronica species are estimated to be
within 1–2 million years agowith high probability of gene flow over that time. Our results also demonstrate that the direction of gene
flow is mainly from the locally endemic V. porphyriana. We hypothesize that the large Siberian plains and topographically diverse
foreland of the Altai Mountains provide an ideal setting for hybridization with the potential for adaptive introgression of alleles
conferring tolerance to cooler climates, to the lowland species migrating into the Altai Mountains.
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■ INTRODUCTION

The exceptional diversity of mountains has been a topic of
intense study since the early work of Humboldt, Darwin, and
Wallace. Recently, the works of Fjeldså & al. (2012), Badgley
& al. (2017), Antonelli & al. (2018), and Rahbek & al. (2019)
proposed that high diversity in mountains is due to the instabil-
ity of mountain systems and significant changes in their land-
scape/topology in response to different forces over a short
geological time period. In addition, they suggested that moun-
tain substrates, life forms, and climate interact at a range of spa-
tial scales, leading to establish diverse, distinct, and challenging
microhabitats. These studies, together with the biogeographical
importance of mountains, led to different characterizations of
mountains, i.e., mountains as cradles, as innovation hubs, as el-
evators, corridors, barriers, reservoirs, refugia, museums, sinks
and graves. From this diversity of terms, it becomes obvious
that mountains influenced species idiosyncratically through

different evolutionary processes (Rahbek & al., 2019). How-
ever, “what are the processes leading to this increased biodiver-
sity inmountains?” continues to puzzle researchers (Stein& al.,
2014). Studies of diverse lineages (species and populations)
adapted to mountains are necessary to disentangle taxon-
specific and general factors allowing them to exploit new, chal-
lenging habitats (Wiens & al., 2006).

High genetic diversity is a prerequisite to deal with rapidly
changing and challenging habitats (Dobzhansky, 1937; Mayr,
1942) despite the fact that many island and likely mountain
radiations seem to have been founded by few colonizers
(Silvertown, 2004; Hughes &Atchison, 2015). Since mutations
(the ultimate source of genetic variation) occurring at a slow rate
are unlikely to offer enough variability for populations, hybrid-
ization and adaptive introgression offer an alternative to popula-
tions facing environmental challenges (Dobzhansky, 1937;
Hamilton & Miller, 2016; Vallejo-Marín & Hiscock, 2016). In
recent years, hybridization has been recognized more and more
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as a creative force in evolution allowing adaptation and specia-
tion (Arnold, 1996; Mallet, 2007; Abbott & al., 2013) and even
the most enigmatic examples of radiations have been demon-
strated to be caused by hybridization and introgression
(Farrington & al., 2014). Hybridization allows species to
rapidly adapt and copewith the stressful and harsh environment
at their range edges. However, the important challenge is to un-
derstand hybridization’s role as a process leading either towards
adaptation and speciation or towards merger and loss of biodi-
versity (Hoffmann & Sgrò, 2011).

Different studies have previously demonstrated that inter-
species hybridization has increased due to global climate
change providing many cases of adaptive introgression. How-
ever, hybridization is also a potential threat to species subsum-
ing rare species or collapsing multiple species into a single
hybrid swarm (see details in Taylor & al., 2005; Oliveira
& al., 2008; Todesco & al., 2016). The weakening of ecolog-
ically mediated reproductive barriers is central to this loss of
biodiversity (Vonlanthen & al., 2012; Chunco, 2014). Owens
& Samuk (2020) expanded on this and found that introgres-
sion can readily weaken the ecologically mediated reproduc-
tive barriers. They also confirmed that introgression
facilitates homogenization of alleles involved in reproductive
isolation. Therefore, the study of patterns of hybridization
and introgression is not only important to understand evolu-
tion but also for conservation of biodiversity.

The Altai Mountains range is characterized by at least 2700
species and diverse habitats, from the alpine zone to highly scat-
tered mountain forests, mountain steppes to lowland desert
steppe and sparse riparian forests in the valleys (Kamelin,
2005). Thesemountains cover an area of 550,000 km2 in central
Asia from Russia, through Mongolia and Kazakhstan to China
with an average altitude of 2000 m, receiving annual
precipitation of 120 mm to 800 mm (Kamelin, 2005). The flora
of the Altai Mountains lies at the crossroads of three different
floras, i.e., Boreal Euro-Siberian elements, Steppe elements
and Ancient Mediterranean elements (Kamelin, 2005). Besides
these floristic elements, the Altai Mountains are also inhabited
by at least 265 endemic vascular plant species (Olonova & al.,
2010; Batlai & al., 2017). These characteristics, different vege-
tation types, high endemism and different floristic elements
make it an attractive biogeographical system. Hybridization is
a widespread phenomenon in the Altai Mountains, especially
in many genera notorious for hybridization (see examples in
Kamelin, 2005; Shmakov, 2005; Elisafenko, 2012; Rodionov
& al., 2015; Nosov & al., 2017; Tzvelev & Probatova, 2019).
However, a general assessment of hybridization in the Altai
flora is still not available. Ebel (2012) provided some quantita-
tive evaluation and found more than 50 interspecific hybrids
from the northwestern part of the Altai-Sayan region, which
comprises just about 2%–3% of the entire Altai flora.

Here, we focus on Veronica subg. Pseudolysimachium as a
model to assess the importance of hybridization on biodiversity
of the Altai Mountains. This subgenus has ~30 species distrib-
uted over Eurasia from Japan to the United Kingdom, with wide
ecological amplitudes from dry semi-deserts to aquatic habitats,

and some well-known ornamental species, e.g., V. spicata and
V. longifolia (Albach & al., 2008; Kosachev & al., 2016). Host-
ing 10 different species of V. subg. Pseudolysimachium and
numerous hybrids of intermediate morphology, the Altai
Mountains are the most species-rich region for the subgenus
(Kosachev, 2003, 2017; Kosachev & German, 2004; Kosachev
& Ebel, 2010; Kosachev & al., 2013). Hypotheses of frequent
hybridization in V. subg. Pseudolysimachium, in general, are so
far based mostly on morphological studies (starting with Härle,
1932) and few or anonymous molecular markers (Bardy & al.,
2011; Kosachev & al., 2016, 2019). The widespread species in-
clude V. incana (up to 2000 m above sea level [a.s.l.]), V. longi-
folia (300 m to 3200 m a.s.l.), V. pinnata (300 to 1500 m a.s.l.),
V. porphyriana (300 to 3200 m a.s.l.), V. spicata (up to 500 m
a.s.l.) and V. spuria (up to 400 m a.s.l.). Among these, V. spicata
and V. spuria reach the eastern margin of their Western Eurasian
steppe distribution, V. pinnata the northwestern margin of its
semi-desert distribution, V. longifolia and V. incana the southern
margin of their Euro-Siberian semi-aquatic and steppe distribu-
tion area, respectively, whereas V. porphyriana is restricted to
Central Asian mountains (Kosachev, 2017).

Besides frequent hybridization, polyploidy is also promi-
nent in the subgenus. Albach & al. (2008) reported that about
45% of the species in the subgenus are diploid and 55% are tet-
raploid, with eight species being purely diploid, two tetraploid
and seven mixoploid. Frequent occurrence of hybridization
and polyploidization in combination with large morphological
variability (as well as interest in them as ornamental plants)
led to the publication of more than 600 valid names for the
~30 taxa in this subgenus (Albach & al., 2017). Nevertheless,
the importance of hybridization and polyploidization to specia-
tion in the subgenus was perceived differently by different re-
searchers, i.e., Graze (1935) considered hybridization as the
likely explanation for morphological variation in the subgenus,
whereas Fischer (1974) disagreed and considered intraspecific
cytotype variation as the likely source. Therefore, here, we use
Veronica subg. Pseudolysimachium in the Altai Mountains to
test the hypothesis that mountains are a cradle of diversity due
to hybridization of species co-occurring in a mosaic of micro-
habitats typical for mountainous regions.We sampled 233 indi-
viduals of the subgenus across its Altai Mountains’distribution
and genotyped 7430 bi-allelic unlinked SNPs (single nucleotide
polymorphisms) to support our hypotheses. We used different
statistical toolkits to assess species delimitation in Altai Veron-
ica and evidence of hybridization. In addition, we inferred
demographic parameters including effective population size,
divergence time and gene flow.

■MATERIALS AND METHODS

Sampling. — Fresh leaf samples of 233 wild adult indi-
viduals were collected during field excursions between 2012
and 2018, complemented with a few well-preserved herbar-
ium specimens (herbaria ALTB, KW, and OLD). The sam-
pling strategy was based on four criteria; to represent all
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taxonomic entities of Veronica subg. Pseudolysimachium
from the Altai Mountains; to include more individuals from
the species with a wider distribution in the Altai Mountains;
to focus on populations growing side-by-side with putative
hybrids; and to collect representatives of all putative hy-
brids (suppl. Fig. S1; Table 1, suppl. Table S1). Altogether,
our sampling included 58 putative hybrid individuals (from
7 different morphotypes) and 172 individuals from the pu-
tative parent species based on morphology (10 species in
total; detailed map in Fig. 1). During the excursions, we
kept all samples in silica gel to dry, tagged with locality
and georeferencing information, reference numbers and
morphotypes (suppl. Table S1). All samples were stored
in cold and dark environment after collection until total ge-
nomic DNA extraction. Vouchers for all specimens were
deposited in ALTB, KW, and OLD. All samples were iden-
tified to species except three samples, included as unidenti-
fied (suppl. Table S1).

Genomic in situ hybridization (GISH). — Mitotic chro-
mosome spreads of Veronica incana (Albach S629), V. longi-
folia (Albach S625), V. pinnata (Albach S630), V. porphyriana
(Albach S626), V. ×schmakovii (Pfanzelt 1181) and V. spicata
(Albach S628) were prepared from root tips as described by
Mandáková & Lysak (2016a). Chromosome preparations
were treated with 100 μg/ml RNase in 2× sodium saline citrate
(SSC; 20× SSC: 3 M sodium chloride, 300 mM trisodium

citrate, pH 7.0) for 60 min and with 0.1 mg/ml pepsin in
0.01 M HCl at 37°C for 5 min; then postfixed in 4% formal-
dehyde in 2× SSC for 10 min, washed in 2× SSC twice for
5 min, and dehydrated in an ethanol series (70%, 90%, and
100%, 2 min each). After chromosome preparations, we used
the BAC clone T15P10 (AF167571) of Arabidopsis thaliana
bearing 35S rRNA gene repeats for in situ localization of nu-
cleolar organizer regions (NORs), and the A. thaliana clone
pCT 4.2 (M65137), corresponding to a 500 bp 5S rRNA re-
peat, to localize 5S rDNA loci. For GISH in V. ×schmakovii,
total genomic DNA (gDNA) of V. longifolia and V. porphyri-
ana was extracted from healthy young leaves using the
NucleoSpin Plant II kit (Macherey-Nagel, Düren, Germany).
All DNA probes were labeled with biotin-dUTP or
digoxigenin-dUTP by nick translation as described in Mandá-
ková & Lysak (2016b). For in situ hybridization, selected
labeled DNA probes were pooled, ethanol precipitated,
dissolved in a 20 μl mixture of 50% formamide, 10% dextran
sulfate, and 2× SSC, and pipetted onto each of the micro-
scopic slides. The slides were heated to 80°C for 2 min and
incubated at 37°C overnight. The hybridized probes were
visualized by fluorescently labeled antibodies against
biotin-dUTP and digoxigenin-dUTP as in Mandáková &
Lysak (2016b). Chromosomes were counterstained with
4′,6-diamidino-2-phenylindole (DAPI, 2 μg/ml) in Vecta-
shield antifade. Fluorescence signals were analyzed and

Table 1. Details of sampled morphotypes and their geographical distribution.

Serial no. Species Distribution Latitude Longitude Number of individuals

1 V. ×altaica Russia 50.9158 82.3274 12

2 V. ×grisea Russia 50.6399 86.3131 9

3 V. ×kolyvanensis Russia 51.7684 82.1381 6

4 V. ×sapozhnikovii Mongolia 1

5 V. ×schmakovii Russia 50.1567 88.2953 11

6 V. ×sessiliflora Russia 50.3437 87.4315 13

7 V. ×smirnovii Mongolia 46.3533 91.2095 6

8 V. arenosa Mongolia 3

9a V. incana Russia 50.6461 86.3144 10

9b V. incana Russia 51.3924 82.2084 24

10 V. longifolia Russia 53.3346 84.2004 27

11 V. pinnata Russia 50.3501 87.4125 22

12 V. porphyriana Russia 51.0431 85.6399 36

13 V. reverdattoi Russia 50.4940 91.3311 1

14 V. sajanensis Russia 56.1262 92.9057 2

15 V. spicata Russia 50.3605 82.2448 37

16 V. spuria Russia 51.7684 82.1381 7

17 V. taigischensis Russia 53.0584 93.3399 3

TOTAL 17 morphotypes (10 taxonomically described pure forms; 7 taxonomically described putative hybrids forms; 3 individuals were not
identified, they are listed in suppl. Table S1)
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photographed using a Zeiss Axioimager epifluorescence mi-
croscope and a CoolCube camera (MetaSystems). The indi-
vidual images were merged and processed using Photoshop
CS software (Adobe Systems).

DNA extraction and library preparation for high-
throughput sequencing. — To extract total genomic DNA,
we used an innuPREP Plant DNA extraction kit (Analytik
Jena, Jena, Germany) following the manufacturer’s instruc-
tions. We used NanoDrop spectrophotometer (ThermoFisher
Scientific, Waltham, Massachusetts, U.S.A.) and Qubit dsDNA
BR Assay Kit (ThermoFisher Scientific) with a Qubit 3.0
Fluorometer (Life Technologies, Carlsbad, California, U.S.A.)
to check the quality and quantity of the extracted DNA,
respectively, for all the samples.

We prepared genomic DNA libraries for high-throughput
sequencing following (Siadjeu & al., 2018). Briefly, 200 ng of
total genomic DNA from each sample were included in re-
striction digestion with one UnitMslI (New England Biolabs,
Ipswich, Massachusetts, U.S.A.), which is not methylation-
sensitive. This reaction was carried out using 1× NEB4 buffer
in 30 μl (reaction volume) for 1 h at 37°C and heat inactivated
at 80°C for 20 min. Restriction digestion was followed by
adaptor ligation. We transferred 15 μl of digested DNA to
96-well PCR plate, mixed with 3 μl of 192 L2 ligation
adaptors (Ovation Rapid DR Multiplex System, Tecan, Leek,
The Netherlands), and 12 μl master mix (4.6 μl D1 water,
6 μl L1 ligation buffer mix, and 1.5 μl L3 ligation enzyme).
The ligation reaction was incubated at 25°C for 15 min and
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Fig. 1. A, Genetic composition based on K = 5 of first-level STRUCTURE results and number of individuals included from that particular locality.
Genetic composition of the localities with more than one individual has been averaged. Key to the colors is given in a separate inset. B–D, Prob-
ability of ancestry of each individual (horizontal axis; total 233 individuals) to each of K = 4, 5, 6 populations (vertical axis). The five populations
correspond mostly to the morphotypes hypothesized for species and putative hybrids. V. ×alt, V. ×altaica; V. ×gri, V. ×grisea; V. ×kol,
V. ×kolyvanensis; V. ×sap, V. ×sapozhnikovii; V. ×sch, V. ×schmakovii; V. ×ses, V. ×sessiliflora; V. ×smi, V. ×smirnovii; V. are, V. arenosa;
V. inca, V. incana; V. lon, V. longifolia; V. pinn, V. pinnata; V. porp, V. porphyriana; V. reve, V. reverdattoi; V. saj, V. sajanensis; V. spic,
V. spicata; V. spur, V. spuria; V. ×taig, V. ×taigischensis; uniden, unidentified.
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heat inactivated at 65°C for 10 min. To the ligation product of
the first reaction, we added 20 μl of the “final repair” master
mix and heated it at 72°C for 3 min. Ligation reaction was fol-
lowed by purification with magnetic beads (beads protocol).
The purified ligated products for each individual were ampli-
fied by PCR (10 cycles) using 4 μl of 5× MyTaq buffer
(Bioline), 0.2 μl polymerase and 1 μl (10 pmol/μl) of standard
Illumina TrueSeq amplification primers. Total volume of the
PCR was 20 μl with 10 μl of ligation product. To remove
small fragments from each individual library, all amplicons
were purified again with magnetic beads (beads protocol). Fi-
nally, the purified individual libraries were normalized and
pooled. We included an additional purification step to remove
the PCR polymerase through Qiagen MinElute Columns
(beads protocol) from the pooled library, and reactions were
sent to LGC Genomics (Berlin, Germany) for sequencing.
The sequencing was carried out on an Illumina NextSeq500
using Illumina V2 Chemistry (Illumina, Berlin, Germany).
The size of the library was kept between 300 and 400 bp.
We used paired-end (PE) sequencing to maximize the chance
of distinguishing homologs from paralogs. Both the forward
and reverse reads were followed for 150 bp, resulting in
300 bp.

Sequencing quality, stacking reads into loci and SNPs
calling. — We used GBS-SNP-CROP to generate polyploid-
aware bi-allelic SNPs (Melo & al., 2016). GBS-SNP-CROP
is explicitly designed for sample sets including individuals
of varying ploidy levels and has the potential to genotype
bi-allelic SNPs and exclude the multi-allelic variants by
imposing a population-level allele frequency filter via a
user-defined “Alternative Allele Strength” parameter. For each
potential SNP position, this parameter considers the total
read depth, across the whole population, of all four bases,
from primary (the allele with the highest depth at that position)
to quaternary (the allele with the lowest depth). A potential
SNP is retained for further downstream analysis if and only
if it is strongly bi-allelic. The GBS-SNP-CROPworkflow first
processes the raw GBS data to exclude the sequences with
noise/bad quality; secondly builds a mock reference (if refer-
ence genome is not available); maps the high-quality reads
to generate standardized alignment files; and lastly, calls
the SNPs. The pipeline has seven Perl scripts utilizing
VSEARCH and PEAR for clustering and merging of paired-
end reads respectively (Zhang & al., 2014; Rognes & al.,
2016). To make a mock reference we used only the diploid in-
dividuals (confirmed by flow cytometry) with a high number
of reads after quality filtering (suppl. Table S1). At the end
we got a total of 233,987 SNPs with 99.9999% confidence,
which means 0.000001 error rate and Alternative Allele
Strength parameter 0.90. For phylogeny estimation we used
all these 233,987 SNPs with 75% missing data allowance be-
fore the post-processing step in VCFtools v.3.0. For STRUC-
TURE analyses, we only used the unlinked bi-allelic SNPs
allowing every SNP to be present again in at least 75% of
the individuals with minor allele frequency equal to 0.05 uti-
lizing VCFtools (Danecek & al., 2011). For assigning

individuals to respective hybrid classes, we applied the avg-
PIC (polymorphism information content averaged over the
reference and alternate SNPs) to get 200 highly informative
SNPs (examples see in Georges & al., 2018; Buono & al.,
2021; Baiakhmetov & al., 2021). For this purpose, we first
converted the VCF file to genlight in vcfR and then in dartR
retrieved the 200 SNPs (Knaus & Grünwald, 2018; Gruber
& Georges, 2019) using the script from Buono & al. (2021).
For the demographic analyses carried out in G-PhoCS
v.1.2.3 (Generalized Phylogenetic Coalescent Sampler), we
used the Stacks v.2.41 (Catchen & al., 2013) pipeline (detailed
bioinformatics processing can be found in suppl. Appendix
S1). This dataset included only three individuals per species
from the pure parents without any missing data of K5
(316 loci). These individuals were selected based on genetic
clustering after assessing the species boundaries in Altai Ve-
ronica (details are in the following section). We submitted
the data to an open data publishing platform, Dryad (DOI:
10.5061/dryad.gb5mkkwmg)

Assessment of species boundaries in Altai Veronica.—
We performed different analyses to distinguish pure individ-
uals from admixed individuals (of different combinations of
species). Initially, we included all 233 individuals (suppl.
Table S2) in a Bayesian modelling approach in STRUCTURE
v.2.3.4 (Pritchard & al., 2000) by considering them as one me-
tapopulation. STRUCTURE infers the presence of distinct ge-
netic populations (here considered species) by assigning
individuals to a number (K) of genetic clusters. We used
STRUCTURE without any predefined spatial or genetic pop-
ulation information to avoid any a priori bias (Janes & al.,
2017) encountered in FST-based assessments (Wright, 1951;
Weir & Cockerham, 1984; Balloux & Lugon-Moulin, 2002).
We used the admixture model assuming correlated allele fre-
quencies after an initial burn-in of 10% generations followed
by 500,000MCMC (Markov chain Monte Carlo) generations.
The alpha and FST values were uniform after the first 100,000
MCMC generations. For each K the analysis ran for 10 itera-
tions in which K was set from 1 to 8. The analysis was based
on 233 individuals and 7340 SNPs (details above). The best
Kwas determined based on the Ln P(D)-values reaching a pla-
teau (Pritchard & al., 2000) and using Evanno ΔK statistics
(Evanno & al., 2005) as implemented in STRUCTURE HAR-
VESTER (Earl & vonHoldt, 2012). We clumped results of the
best K in CLUMPP v.1.1.2 (Jakobsson & Rosenberg, 2007)
and displayed in an Excel spreadsheet (order and individuals’
membership in suppl. Table S2). In subsequent analyses, we
excluded putative pure hybrid individuals and one unidenti-
fied individual with clear admixture from the main dataset
(233 individuals). This reduced the dataset to 174 individuals.
The run was carried out in the same fashion (K = 1, 2, …, 8).
Lastly, we performed a hierarchical STRUCTURE analysis
with two different groups; the first group included individuals
of V. arenosa, V. longifolia and V. pinnata, whereas the sec-
ond one included individuals of V. incana, V. porphyriana,
V. reverdattoi, V. sajanensis, V. spicata, V. spuria, and V. tai-
gischensis (suppl. Table S2). We also ran the second-level
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STRUCTURE analysis for the second group where the first
group included individuals of V. incana, V. porphyriana and
V. reverdattoi (totaling 71 individuals), while the second
group consisted of individuals from V. sajanensis, V. spicata,
V. spuria, and V. reverdattoi (49 individuals). The individuals
were grouped based on the results of the first-level
STRUCTURE results.

To supplement the results of the STRUCTURE analyses,
we performed discriminant analysis of principal components
(DAPC: Pritchard & al., 2000; Jombart & al., 2010; Grünwald
& Goss, 2011) in the R-package adegenet v.1.3-1 (Jombart
& Ahmed, 2011). DAPC is a multivariate approach and is less
assumptive compared to STRUCTURE. For example,
STRUCTURE assumes that all SNPs are unlinked and that
populations are panmictic (Pritchard & al., 2000). In addition,
DAPC performs better than STRUCTURE in cases of com-
plex population structures and their corresponding genetic
clusters/groups (Jombart & al., 2010). In the actual DAPC,
we first divided the dataset into between-group and within-
group components. This step is useful to increase discrimina-
tion between/among groups by transforming data, into the
most important principal components (PCs), followed by
grouping of individuals into clusters using discriminant anal-
ysis (DA). We determined the most important PCs by apply-
ing spline interpolation statistics. The best K was displayed
with the function find.clusters (Jombart & Ahmed, 2011).

To additionally supplement the results of DAPC and
STRUCTURE, we reconstructed an unrooted phylogenetic
tree using maximum likelihood statistics based on the best
substitution model (GTR) as assessed in jModelTest v.2
(Guidon & Gascuel, 2003; Darriba & al., 2012) in IQ-TREE
v.1.6.12 (Nguyen & al., 2015) with 1000 ultrafast bootstrap
replicates (Hoang & al., 2018). We reconstructed maximum
likelihood trees based on both the full dataset (233 individuals,
total 233,987 SNPs, with 199,736 parsimony-informative
sites, 27,037 singleton sites, and 7214 constant sites) and the
one including only the putative pure individuals (174 individ-
uals, total 233,987 SNPs, 173,631 parsimony-informative
sites, 40,812 singletons, and 19,544 constant sites). In the ac-
tual analyses, we removed the constant sites and considered
the ascertainment bias which means to inform the algorithm
that each SNP is a discrete character (details see in
Lewis, 2001).

Lastly, we performed AMOVA as employed in ARLE-
QUIN v.3.5 (Excoffier & Lischer, 2010) to compare genetic
differentiation among the clusters/groups/species that resulted
from STRUCTURE, DAPC and maximum likelihood tree.
We excluded again the putative hybrid individuals from this
analysis (resulting in 174 individuals, see details in suppl.
Table S2). The significance of fixation indices was calculated
using 10,000 permutations with those SNPs present in at least
75% of the individuals. For AMOVA, we used the FST-based
distance method of pairwise differences as suggested (Weir
& Cockerham, 1984; Weir, 1996; Excoffier & al., 2013).
Calculating FST is a standard measure of the genetic variance
among populations (Whitlock & McCauley, 1999).

Assignment of hybrid classes.—We divided all individ-
uals into five groups (hereafter we will call each group a sce-
nario) based on the STRUCTURE results (including all
233 individuals) in combination with the initial hypothesis
(Fig. 1, suppl. Fig. S1). These scenarios included V. pinnata
× V. spicata and putative hybrids V. ×altaica (scenario 1);
V. incana × V. longifolia and putative hybrids V. ×grisea
(scenario 2); V. longifolia × V. porphyriana and putative hy-
brids V. ×schmakovii, V. sajanensis and V. spuria (scenario
3); V. pinnata × V. porphyriana and putative hybrids
V. ×sessiliflora (scenario 4); and V. pinnata × V. porphyriana
and putative hybrids V. ×smirnovii (scenario 5). Note that
Kosachev & German (2004) suggested V. ×smirnovii to be a
hybrid of V. porphyriana with V. laeta but V. pinnata is the
closest relative of the latter in our sampling. To assign hybrid
individuals to classes of F1-hybrids or later-generation hy-
brids (F2-hybrids, or backcrossed), we implemented two dif-
ferent approaches: (i) We inferred Q values for each
individual in a Bayesian framework as employed in STRUC-
TURE (for only K = 2). This analysis ran with half million
MCMC generations discarding the first 10% chains. (ii) We
used a model-based method to identify hybrid individuals em-
ployed in NewHybrids v.1.0 (Anderson & Thompson, 2002;
Anderson, 2003). NewHybrids v.1.0 assigns individuals to
six main categories of parent1, parent2, F1-hybrids and
later-generation hybrids (F2-hybrids, and backcrossed indi-
viduals to parent1 and parent2; Anderson, 2003) using data
on multiple, unlinked markers without any prior information.
NewHybrids v.1.0 is suitable for both markers with fixed alle-
lic differences between the species and markers without fixed
differences using the framework of Bayesian statistics
(Anderson & Thompson, 2002). To run Newhybrids v.1.0,
we parallelized the program by using the R package parallel-
newhybrid (Wringe & al., 2017; https://github.com/bwringe/
parallelnewhybrid). We selected only a set of 200 SNPs loci,
the ones which were fixed and different or most divergent in
terms of allele frequency profiles (Georges & al., 2018;
Buono & al., 2021). We ran NewHybrids with default param-
eter settings, the Jeffreys prior for θ, 10,000 sweeps and
10,000 MCMC with 10% burn-in. To countercheck the re-
sults, we ran the analyses on 200 SNPs selected randomly.
The reference population (parental individuals) were those
that had posterior probabilities ≥0.85 selected from the results
of STRUCTURE (K5, all individuals), except V. incana and
V. pinnata (suppl. Tables S2, S3).

Demographic inferences. — To infer the demographic
history of all five species involved in hybridization, we used
the program G-PhoCS v.1.2.3 (Gronau & al., 2011). The main
parameters considered were effective population size of each
species, divergence times, and migration rates. G-PhoCS in-
fers a species’demographic history associated with the popu-
lation (here species) phylogeny based on inferred genealogies.
Migration rates are estimated based on scenarios of post-
divergence gene flow, defined by ordered pairs of branches
in the population phylogeny, and allow different rates associ-
ated with two directions of gene flow. All parameters were
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inferred usingMCMC to jointly sample model parameters and
genealogies. G-PhoCS models gene flow along defined mi-
gration bands based on unphased diploid genotypes integrat-
ing over all possible phases. Using MCMC methods,
G-PhoCS pools information across loci in obtaining an ap-
proximate posterior distribution for the parameters of interest.
The major challenge in using G-PhoCS is the utilization of un-
phased, de novo diploid loci, whichmay have biases that result
from differences in power and accuracy in single nucleotide
variant detection. Such biases may stem from differences in
sequencing technologies, depth of coverage and data optimi-
zation during de novo assemblies. We alleviated this problem
by using stringent filtering steps during the bioinformatics
pipeline and by assuming that the selected loci were neutral.
We used the coalescent-based FDIST method from Arlequin
v.3.5 (Excoffier & Lischer, 2010) to investigate selection on
neutral loci. For the actual G-PhoCS analysis, we restricted
our dataset to three individuals per species due to high compu-
tational demands including the dataset of 316 loci (we used
the same dataset as there were no selected loci in this dataset)
without missing data. The inferences were then conditioned
on the trees (tree constructed for the reduced dataset with
40% missing data: suppl. Fig. S2). The actual analysis em-
ployed 1 million generations of MCMC.We used the program
TRACER v.1.7 (Rambaut & al., 2018; http://tree.bio.ed.ac.uk/
software/tracer/) to ensure convergence of all parameters. To
convert estimates of divergence time (τ) and population size
(θ) from mutations per site to years (T) and effective numbers
of individuals (Ne), we used θ = 4Ne μg and T = τ � g / μ
(in which μ is mutation rate per nucleotide site per year and
g is generation time) following (Lindblad-Toh & al., 2005;
Gronau & al., 2011; Oswald & al., 2019; Yu & al., 2021).
We assumed a mutation rate of 2.44E-9 substitutions per base
per year (Richardson & al., 2001; as followed by Rønsted
& al., 2002). We considered a generation time of 10 years
based on personal observations. Migration rates are based on
the migration rate per generation parameter (Msx = msx � θx / 4;
details in Gronau & al., 2011), which is the proportion of in-
dividuals in population x that arrived by migration from an-
other population per generation (as explained in Oswald
& al., 2019). Gene flow was calculated using the total migra-
tion rate. In cases in which the total rate is low, total migration
rate approximates the probability of gene flow between the
two species. However, for higher rates, we adjusted probabil-
ities into rates with the equation P = 1 − e−m (where P = the
probability of gene flow, e = exponent andm = total migration
rate; following vonHoldt & al., 2016).

■ RESULTS

Species boundaries and cohesion. — The assignment
test in STRUCTURE with the dataset including all 233 indi-
viduals recovered K = 5 as optimal both by Evanno ΔK and
likelihood scores (suppl. Fig. S3), which differs from the
expected K = 10 based on species assignment (Table 1).

The result of three different groupings, K = 4, 5, 6 recovered
more or less highly genetically cohesive groups including Ve-
ronica longifolia, V. pinnata, V. porphyriana and V. spicata;
however, the individuals from V. incana, in K4 showed ad-
mixture of V. longifolia and V. porphyriana, but were recov-
ered as a separate group in K5 and K6 with high genetic
portion from V. porphyriana (Fig. 1). Removing the putative
hybrids and including only putative purebreds (174 individ-
uals, ~75% of total dataset), the STRUCTURE result of K =
5 again showed more or less the same results (Fig. 2B, suppl.
Fig. S3).

The DAPC recovered 20 principal components as the best
to group our data and clearly resolved all the individuals intoK
= 5 (Fig. 2C; suppl. Fig. S4). The DAPC results were sup-
ported by the unrooted trees inferred by IQ-TREE (Fig. 2A).
The morphometric analysis (suppl. Appendix S1.) also sup-
ported the results of the genetic analyses in delimiting five
main groups similar to those in Fig. 1. Genetic differentiation
among species based on AMOVA was FST = 0.16 (Table 2).

The hierarchical STRUCTURE analysis retrieved five co-
hesive groups including Veronica incana, V. longifolia, V. pin-
nata, V. spicata and V. porphyriana. In addition to these five
groups, V. arenosamerged with V. pinnata, while V. sajanensis,
and V. spuriawithV. spicata. However, V. reverdattoi andV. tai-
gischensis did not fit to any clear group (suppl. Table S2).

Chromosome localization of rDNA loci and classes of
putative hybrids. — Chromosome numbers and rDNA loci
were determined in six species. Veronica longifolia, V. pin-
nata, V. porphyriana, V. ×schmakovii, and V. spicata were
found to have 2n = 2x = 34 chromosomes and one 5S
rDNA-bearing chromosome pair, whereas V. incana had a tet-
raploid chromosome number (2n = 4x = 68) with a corre-
sponding double number of 5S loci, i.e., two 5S-bearing
chromosome pairs. In contrast to the conserved number of
5S rDNA, we found a large interspecific variation in the num-
ber of 35S rDNA: four NOR-bearing chromosomes in V. por-
phyriana, six in V. ×schmakovii and V. spicata, seven in
V. pinnata, eight in V. longifolia, and at least nine in the tetra-
ploid V. incana. In V. incana, additional very weak signals
were observed (Fig. 3). Each gDNA of V. longifolia and
V. porphyriana hybridized to one half of the chromosome
complement of V. ×schmakovii. Therefore, GISH strongly
suggests a homoploid hybrid origin of V. ×schmakovii
from parental genomes closely related to V. longifolia and
V. porphyriana. This is also supported by the number of 35S
rDNA-bearing chromosomes in V. ×schmakovii (six), an in-
termediate value between V. longifolia (eight) and V. porphyri-
ana (four).

The hypothesis of hybridization between and among spe-
cies of Veronica in the Altai Mountains based on their mor-
photypes was mostly supported by STRUCTURE, and
NewHybrids (Fig. 4; suppl. Table S3). The first-level
STRUCTURE analysis is a bit more inconclusive in that re-
spect showing admixture of various levels involving both the
biparental hybrids and potential triparental hybrid (Fig. 2).
The maximum likelihood tree based on all individuals also
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revealed that the putative hybrid individuals are mostly sister
to one of the suggested parents (suppl. Fig. S5). The geneti-
cally admixed individuals were mostly the ones identified as
hybrids a priori by morphological characteristics (suppl. Fig.
S1); however, we also recovered admixture in individuals

considered to be pure species, e.g., V. sajanensis, V. spuria,
V. taigischensis, and V. reverdattoi. The STRUCTURE results
showed that in most cases the putative hybrid individuals in all
five scenarios had posterior probabilities ranging between
0.15 < Q < 0.50 or 0.50 < Q < 0.85, which suggests a hybrid

V. spicata-V.spi.7.1
V. spicata-V.pacz.12
V. spicata-DCA-1707
V. spicata-V.spi._8_2012
V. spicata-DCA-1691

V.  spicata-DCA-1672
V. spicata-DCA-1698
V. spicata-DCA-1742

V_spicata-V.pacz.12
V. spicata-V.spi.4.1

V_spicata-DCA-1681
V. spicata-V.spi.3.1

V_spicata-DCA-1706
V. spicata-V.spi.2.1

V. spicata-V.spi.8.1
V. spicata-V.spi.1.1

V.spicata-DCA-1682
V.  spicata-DCA-1690

V. spicata-V.spi.5.1
V. spicata-DCA-1676
V.  spicata-DCA-1678
V. spicata-DCA-1677

V.  spicata-DCA-1747
V.  spicata-DCA-1743
V.  spicata-DCA-1744

V. spicata-V.spi.9.1
V. spicata-DCA-1711
V. spicata-DCA-1331

V. spicata-DCA-2147
V. spicata-DCA-2148

V. spicata-DCA-2152
V. spicata-DCA-2151

V. spicata-DCA-2149
V.  spicata-DCA-2150

V.  spuria-DCA-1675
V.  spuria-DCA-1673

V.  spuria-DCA-1693
V.  spuria-DCA-1674
V.  spuria-DCA-1694

V. spuria-V.spu_2_2012
V.  spuria-DCA-1692

V. spicata-DCA-1689
V.  spicata-DCA-1699

V. porphyriana-DCA-1569
V.  porphyriana-DCA-1722
V.  porphyriana-DCA-1564
V. porphyriana-V.por.10.1

V.  porphyriana-DCA-2141
V.  porphyriana-DCA-2140

V.  porphyriana-DCA-2127
V.  porphyriana-DCA-2145
V.  porphyriana-DCA-2153
V.  porphyriana-DCA-2155

V.  porphyriana-DCA-1754
V.  porphyriana-DCA-2154
V.  porphyriana-DCA-2156

V.  porphyriana-DCA-1580
V. porphyriana-DCA-1576

V.  porphyriana-DCA-1575
V.  porphyriana-DCA-1577
V.  porphyriana-DCA-1574
V.  porphyriana-DCA-1579

V.  porphyriana-DCA-1573
V.  porphyriana-DCA-1582

V.  porphyriana-DCA-1730
V. porphyriana-V.por.boki_2012

V.  porphyriana-DCA-1718
V. porphyriana-V.por.9.1

V.  porphyriana-DCA-1710
V.  porphyriana-DCA-1733

V.  porphyriana-DCA-1717
V.  porphyriana-DCA-1753

V.  porphyriana-DVPO
V. porphyriana-DCA-1727

V.  porphyriana-DCA-1755
V.  porphyriana-DCA-1752
V.  porphyriana-DCA-1723

V.  porphyriana-DCA-1332
V.  porphyriana-DCA-1324
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Fig. 2.Assignments of individuals toK clusters/populations based on Bayesian, multivariate and likelihood approaches as implemented in STRUC-
TURE, DAPC (in the adegenet package) and IQ-TREE programs respectively. A, Maximum likelihood unrooted tree reconstructed in IQ-TREE,
calibrated with 1000 ultrafast bootstrap replicates. The numbers near the nodes represent bootstrap confidence. This analysis was based on 174 pu-
tative pure individuals. B, Probability of ancestry of each individual (horizontal axis; total 174 individuals) to each of K = 5 populations (vertical
axis). The five populations correspond mostly to the morphotypes hypothesized for putative pure species. C, Discriminant analysis of principal
components using the same dataset as in (B). D, Corresponding morphotypes of K = 5. — Photos: P.A. Kosachev.
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0.03

V.  pinnata-v.nana_9_2012
V. pinnata-DCA-1751

V. pinnata-V.pin.8.1
V. pinnata-DCA-1749

V. pinnata-DCA-1724
V. pinnata-DCA-1748

V. pinnata-DCA-1325
V. pinnata-DCA-1750

V. pinnata-DCA-1731
V. pinnata-DCA-1327

V. pinnata-DCA-1734
V. pinnata-DCA-1720

V. pinnata-DCA-1721
V.  pinnata-V.pin.6.1

V.  pinnata-V.pin.9.1
V. pinnata-DCA-1719

V. pinnata-DCA-1719
V. pinnata-DCA-1729

V. pinnata-DCA-1729
V. pinnata-DCA-1713

V. arenosa-DCA-1503
V. arenosa-DCA-2132

V. arenosa-DCA-2134
V. pinnata-V.pin.7.1

V. pinnata-DCA-2128
V. reverdattoi-V.rev.tuva

V. sajanensis-DCA-2157
V. sajanensis-DCA-2158

V.  longifolia-DCA-1358
V.  longifolia-DCA-1547

V.  longifolia-DCA-1357
V.  longifolia-DCA-1546

V.  longifolia-DCA-1356
V.  longifolia-DCA-1549

V. longifolia-DCA-1548
V. longifolia-DCA-1545

V. longifolia-V.long.9.1
unidentified-DCA-1601

V.  longifolia-DCA-1600
V. spicata-DCA-1330

V.  longifolia-DCA-2183
V.  longifolia-DCA-2184

V. longifolia-DCA-2177
V.  longifolia-DCA-2144

V.  longifolia-V.long.10.1
V.  longifolia-DCA-1333

V.  longifolia-DCA-1355
V.  longifolia-DCA-1728

V.  longifolia-DCA-1354
V.  longifolia-V.schm1.1

V.  longifolia-V.long1.1
V. longifolia-DCA-2142

V.  longifolia-DCA-1555
V.  longifolia-DCA-1712

V.  longifolia-DCA-1597
V.  longifolia-V.long.1.1

V.  longifolia-DCA-2175
V. taigischensis-DCA-2161

V. taigischensis-DCA-1388
V. taigischensis-DCA-2160

unidentified-V.pin4.1

V. incana-DCA-1594
V. incana-DCA-1589

V. incana-DCA-1338
V. incana-DCA-1335

V. incana-DCA-1342
V. incana-DCA-1343

V. incana-DCA-1344
V. incana-DCA-1345

V. incana-DCA-1591
V. incana-DCA-1592
V. incana-DCA-1593

V. incana-V.czem147
V. incana-V.inc.7.1

V. incana-DCA-1339
V. incana-DCA-1340

V. incana-DCA-1590
V. incana-DCA-1587
V. incana-DCA-1346

V. incana-DCA-1595
V. incana-DCA-1588

V. incana-DCA-1341
V. incana-V.inc.6.1

V. incana-DCA-2146
V. incana-V.inc.4.1

V. incana-V.inc.3.1
V. incana-V.inc.1.1

V. incana-DCA-1542
V. incana-DCA-1536

V.  incana-V.inc_13_2012
V. incana-V.inc.12

V. incana-V.inc.2.1
V. incana-V.inc.9.1
V. incana-DCA-1601

V. incana-V.czemTuva
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Fig. 2. Continued.
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swarm from F1 to later-generation hybrids (Fig. 4; suppl.
Table S3). The analysis implemented in NewHybrids to
group the hybrid individuals supported the results of
STRUCTURE with the exception of scenario 5 and recov-
ered hybrids of different classes but dominated by F1 (suppl.
Table S3).

Demographic history of pure species. — Using
G-PhoCS to model the associated demographic history in
the species of Veronica (Fig. 5), we retrieved divergence times
between the major clades and branches to be recent (1.14 Mya
to 1.57 Mya) at 95% HPD (highest posterior density; see
suppl. Table S4 for complete information). Even with the up-
per HPD at 95%, the divergence time was in the range of 1.35
Mya to 1.84 Mya. Among the five species, the earliest re-
cently diverged species are V. porphyriana and V. incana
(1.14 Mya), while the most divergent species is V. pinnata
(1.84 Mya) at upper 95% HPD. Similarly, the lowest effective
population size is that of V. pinnata (4280 individuals) fol-
lowed by V. porphyriana (6150 individuals), while the largest
one belongs to V. spicata (21,000 individuals) at average 95%
HPD. The effective population sizes of their ancestors were
also different in comparison with the extant effective popula-
tion sizes of all the five species, e.g., the smallest one of
V. porphyriana and V. spicata ancestors (1160 individuals),
whereas the largest one for the ancestor population of all spe-
cies (16,100 individuals) (Fig. 5; suppl. Table S4). Our model-
ing of gene flow in both forward and reverse directions
showed high probability of frequent gene flow from V. longi-
folia and V. pinnata to V. incana, V. porphyriana and V. spi-
cata. Nevertheless, from V. incana and V. porphyriana to
the other three species, the probability of gene flow was also
comparatively high. Similarly, the gene flow among V. incana,
V. porphyriana and V. spicata was high in both forward and
reverse directions (Fig. 5; suppl. Table S4).

■DISCUSSION

Based on extensive sampling and GBS analysis, we ana-
lyzed the relationships and evolutionary history of Veronica

subg. Pseudolysimachium in the Altai Mountains, a center of
diversity in the group. We have included individuals from
10 species (following the taxonomy of Kosachev & al., 2013
and 2015; not considering hybrids inferred based on morphol-
ogy). The results of Bayesian modelling (STRUCTURE) were
not conclusive at first but with the second-level analysis and
exclusion of admixed individuals, the results led to five sepa-
rate clusters, i.e., V. incana, V. longifolia, V. pinnata, V. por-
phyriana and V. spicata corresponding to the ribotype
groups identified by Kosachev & al. (2016). This was further
highly supported and confirmed by DAPC and maximum
likelihood phylogenetic analysis. The FST-based analysis (dis-
tance method of pairwise differences) showed higher genetic
distances for K5 as well. These results are consistent with
the morphometric analysis (suppl. Appendix S1) in which
the same five clusters were retrieved, with each cluster distant
from the other species and putative hybrids intermediate be-
tween these five species. The problem of assigning V. incana,
V. porphyriana and V. spicata to separate clusters is mirrored
in previous taxonomic concepts in which V. incana and V. por-
phyrianawere considered subspecies of V. spicata (Elenevsky,
1971; Walters & Webb, 1972). The problem can either be
explained by high rates of gene flow among these species
(Waples & Gaggiotti, 2006), recent divergence (vonHoldt
& al., 2010; Rodríguez-Ramilo & Wang, 2012; Waples
& Anderson, 2017), or small numbers of individuals or loci
(Waples & Gaggiotti, 2006). Here, we consider a combination
of the first and second explanation to be the most likely given
that the coalescent sampler approach (G-PhoCS) suggested
that gene flow among the three species is frequent in both di-
rections assuming that all 316 loci were neutral and unlinked.
Gene flow between V. spicata and V. porphyriana is likely
limited due to ecological separation between lowland habitats
of the former (below 500 m a.s.l.) and subalpine
habitats (reaching as far down as 300 m a.s.l. only in valleys
of the Altai). However, this may have been different in the
Pleistocene considering that populations of V. porphyriana
likely occurred at lower elevations in these times.With regards
to V. incana, sympatric populations with V. pinnata and
V. longifolia have been encountered during our fieldwork.

Table 2. Details of AMOVA in each group with different combination without including the putative hybrid.

Source of variation Variance components Percentage of variation Fixation index

Global AMOVA based on K = 5
results of STRUCTURE
including all the putative pure 174
individuals

Among Species 14 16

Within Species 74 84

TOTAL 88 100 FST: 0.16*

Hierarchical AMOVA based on
K = 5 results of STRUCTURE
including all the putative pure 174
individuals

Among Groups 7.2 8.13 FCT: 0.08*

Among Species 7.1 8.01 FSC: 0.09*

Within Species 74.3 83.86 FST: 0.16*

TOTAL 88.6 100

FST, correlation within populations relative to total; FCT, correlation within groups relative to total; FSC, correlation within populations relative to
groups.* P < 0.001, 10,000 permutations.
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However, it should be noted that no hybrids between V. spi-
cata and V. porphyriana and V. incanawere noted in the field
or in the molecular investigations. The hybrid between V. in-
cana and V. porphyriana (V. ×czemalensis Kosachev &
Albach) has been described based on morphology but those
specimens assumed to belong to this hybrid have all been
found to be genetically V. incana or hybrids with other species
(see also Kosachev & al., 2016). Additionally, demographic
inferences suggest that divergence between all five species is
relatively recent. Our inference for the divergence of all five
species coalesced at 1.57 Mya (at average 95% HPD); 1.31
Mya (at lower 95% HPD); and 1.84 Mya (at upper 95%
HPD) (suppl. Table S4). These divergence times are almost

in line with previous estimates (1.7 Myr) based on molecular
dating on a single gene region (Meudt & al., 2015). However,
the divergence between V. spicata and V. incana was esti-
mated to be much younger (130,000 yrs; Meudt & al., 2015)
compared to our estimate of 1.21 Mya (suppl. Table S4).
The issue is difficult to resolve now because of the different
taxon sampling, as well as DNA markers and dating
methods used.

Frequent hybridization in Veronica subg. Pseudolysima-
chium has been reported by many researchers based on mor-
phological characteristics or anonymous molecular markers
(Härle, 1932; Trávníček & al., 2004; Bardy & al., 2011; Kosa-
chev & al., 2019). Here, for the first time we are providing a

Fig. 3. Chromosome localization of rDNA and genomic in situ hybridization (GISH) in Veronica. Mitotic chromosome complements of: A,
V. porphyriana; B, V. ×schmakovii; C, V. spicata; D, V. pinnata; E, V. longifolia; and F, V. incana hybridized with 35S (red fluorescence) and 5S
(purple) rDNA probes. G, Mitotic chromosomes of V. ×schmakovii hybridized with gDNA of V. longifolia (red) and V. porphyriana (green). —
Chromosomes were counterstained with DAPI. Scale bars, 10 μm.
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genome-wide investigation of hybridization, gene flow and
limits of reproductive isolation in species of V. subg. Pseudo-
lysimachium distributed in the Altai Mountains. Our results
inferred F1 hybrids as the most dominant group of hybrids.
Based on the first-level analysis in STRUCTURE, we re-
trieved different combinations of admixed individuals involv-
ing different species (V. spicata × V. pinnata; V. longifolia ×
V. incana; V. longifolia × V. porphyriana; V. pinnata ×
V. porphyriana), which supported previous hypotheses based
on morphology (Kosachev, 2003; Kosachev & al., 2013). The
results recovered some individuals with inconclusive support
and suggesting a range of F1 to later-generation hybrids.
However, based on the results of GISH, NewHybrids, mor-
phological analyses and field experience, we are hesitant to
explain the results by extensive backcrossing. Analyses based
on reference genomes should be conducted to investigate
whether there is a bias towards loci of one species or another
in our STRUCTURE analysis. In addition, experimental
crossings will be necessary to evaluate whether these hybrid
forms encountered in the Altai Mountains are fertile and form
consistent and recognizable morphologies, rather than swarms
with continuous morphological variation. Based on this, we
also suspect that the support for scenario 5 in the STRUC-
TURE analysis (V. ×smirnovii = V. pinnata × V. porphyriana)
is an artifact of the lacking to include correct parents. New-
Hybrids supported the involvement of V. porphyriana, as sug-
gested by morphology (Kosachev &German, 2004) but not of
V. pinnata, which is notable since Kosachev &German (2004)
suggested V. laeta (not sampled by us) to be the second parent.

Phylogenetic analyses (suppl. Fig. S5) support a closer re-
lationship of V. ×smirnovii with V. arenosa than with
V. pinnata. More in-depth comparisons of STRUCTURE
and NewHybrids following Vähä & Primmer (2006) are nec-
essary but it seems that STRUCTURE has more problems
assigning individuals with less divergent parents and
NewHybrids with more divergent parents.

The individuals showing admixture are mostly those iden-
tified as hybrids by morphological characteristics. Neverthe-
less, we also found that our specimens of Veronica sajanensis,
V. spuria, V. reverdattoi and V. taigischensis were inferred to
be admixed individuals (Fig. 2A), although these species have
not been suggested to be hybrids before. We abstain from hy-
pothesizing that these four species are, indeed, hybrids since
the low sample size in these taxa may have obscured results
(Wang, 2017). The case of V. spuria being so close to V. spicata
is especially interesting since European specimens are usually
considered closer to V. longifolia (Kosachev & al., 2016; Dau-
bert & al., in prep.) but Kosachev & al. (2016) already recog-
nized that their second specimen, a specimen from the Ural
Mountains, is phylogenetically closer to V. spicata. Thus, de-
spite potential false positives caused by low sample size of un-
ambiguous species included, there are many, different hybrids
in the subgenus and the question remains why this taxon has
such a high rate of hybridization and weak reproductive bar-
riers. The major points may be that plants from the subgenus
are perennial (with possibly quite long generation time of more
than 10 years) and outcrossing, two parameters that have been
shown to correlate strongly with a high hybridization rate
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Fig. 4. STRUCTURE results showing the probability of ancestry of each individual (horizontal axis) to each of K = 2 populations (vertical axis) in
all the five scenarios. A, Veronica spicata × V. pinnata; B, V. incana and V. longifolia; C, V. longifolia and V. porphyriana; D& E, V. pinnata and
V. porphyriana involving putative hybrids of V. ×schmakovii and V. ×sessiliflora. Details of the exact posterior probabilities of each putative hybrid
individual and their corresponding parents are given in suppl. Table S3.
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(Mitchell & al., 2019). According to Carlquist (1974), overlap-
ping flowering times, long flowering season of the parental spe-
cies, and the presence of generalist pollinators (e.g., butterflies
and syrphids in the case of V. subg. Pseudolysimachium; per-
sonal observation) facilitate the interspecific cross-pollination
necessary for hybridization.

Our demographic model in G-PhoCS suggested a high
probability of gene flow from Veronica incana and V. por-
phyriana to the other three species. This is consistent with
general expectations in cases of hybridization in so far as al-
leles generally introgress from the native species to the immi-
grants (Barton & Hewitt, 1985; Allendorf & al., 2001; Buggs,
2007; Currat & al., 2008). Although we do not have evidence
for V. incana being a long-time resident of the Altai
Mountains – it is widespread from eastern Europe to eastern
Asia, V. porphyriana is a subalpine species, restricted to the
Altai Mountains and certainly originated from V. spicata as
a form adapted to subalpine habitat (Elenevsky, 1971). In fact,
V. porphyriana differs from V. spicata mainly in the strongly

glandular indumentum (Kosachev & al., 2013), which is a
general phenomenon in alpine plants (Wu & al., 2021). Thus,
after the ice ages it is easily imaginable that V. porphyriana
extended its range upwards followed by the widespread, low-
land V. longifolia, V. pinnata and V. spicata migrating to the
Pleistocene refugia of V. porphyriana and then crossing with
it. This may be an ongoing process since both, V. pinnata
and V. longifolia, still co-occur at the lower elevational range
of V. porphyriana. According to Allendorf & al. (2001), Bar-
ton & Hewitt (1985), Buggs (2007), and Currat & al. (2008),
in such cases, gene flow of alleles generally occurs from the
native species to the immigrants. Adaptive introgression led
by hybridization may have played its role in this regard provid-
ing adaptations to these newly immigrated species to cope
with the mountainous climate of the Altai. However, to sub-
stantiate this hypothesis, we would need a more in-depth ge-
nomic scan to analyze differences in general homozygosity
between species and identify potential adaptive alleles.
Furthermore, different studies suggested that in such cases

V. porphyriana

V. spicata

V. incana

V. longifolia

V. pinnata
T=MYA

0      

P=1P=0.99P=1P=0.98P=0.19

P=1P=0.96P=0.99P=0.71P=0.99

P=0.71P=0.65P=0.99P=0.92P=1

P=0.69P=0.99P=1P=1P=0.97

1.50 1.00 0.50

Fig. 5. Results of the G-PhoCS analysis for effective population sizes, and gene flow using only pure individuals (no admixture). The inferred current
effective population size (Ne) of each species are given for all the five species. The direction of the arrows represents the probability ofmigration among
the species both in forward and reverse directions. The width of the bars represents the effective population size of each species. For population size
estimation, we used the equations Ne (effective population size) = θ / 4μg; and T (divergence time) = τ � g / μ; where substitution rate/site/year
(μ) = 2.44E-9, generation time for population (g) = 10 years. Migration rates are based on per generation parameter (Msx = msx � θx / 4), which is
the proportion of individuals in population x arrived by migration from another population per generation. Gene flow has been calculated using the
total migration rate, cases where the total rate is low, it approximates the probability of gene flow between the two species. However, for higher rates,
we adjusted probabilities into rates with the equation P = 1 − e−m (where P = the probability of gene flow, e = exponent, and m = total migration rate;
following vonHoldt & al., 2016). The phylogenetic tree onwhich the G-PhoCS analysis has been based is given in suppl. Fig. S2. For complete details,
see in Materials and Methods as well as suppl. Tables S4 and S5 for migration rates (msx), τ and θ values, and divergence times.
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hybridization involving adaptive introgression is also a poten-
tial threat, in which the more common species can assimilate
the more restricted species (for example, see Todesco & al.,
2016) and lead to its population decline and extinction. Owens
& Samuk (2020) studied this process in more detail and found
that adaptive introgression can readily weaken the ecologi-
cally mediated reproductive barriers and facilitate homogeni-
zation of reproductive isolating alleles (see examples about
the weakening of ecologically mediated reproductive barriers
in Vonlanthen & al., 2012; Chunco, 2014). We currently have
no evidence for this to be the case in the species in the Altai
Mountains and species boundaries in the subgenus seem to
be maintained by ecological adaptation of the species to ex-
treme habitats (Kosachev & al., 2019).

■ CONCLUSIONS

Here, we have assessed species boundaries and cohe-
sion, frequent hybridization and demographic histories of
Veronica subg. Pseudolysimachium within its center of di-
versity in the Altai Mountains. Our results support the hy-
pothesis of frequent hybridization, and gene flow between
these species, as all putative hybrid individuals were inferred
to be most likely F1 hybrids, although there were hybrid in-
dividuals which were difficult to place in any hybrid class.
These results are in line with our field observations and the
results of GISH investigations. We conclude that V. subg.
Pseudolysimachium in the Altai Mountains represents a
complex of species characterized by low species cohesion
with weak genetic barriers. It is desirable to investigate the
genomes of these species more thoroughly to understand
the genomic patterns of natural selection and adaptive eco-
logical impact of hybridization. More generally, our study
highlights the potential of hybridization in the Altai Moun-
tains. We hypothesize that the large Siberian plains and to-
pographically diverse foreland of the Altai Mountains
provide an ideal setting for hybridization between lowland
and highland congeners, with the potential for introgression
of alleles that confer tolerance to cooler climates of lowland
species migrating to the Altai Mountains.
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