Supplemental Figure 1. A Three-Way Comparison of the Relative Position of Corresponding Synteny Blocks of *Stenopetalum nutans* (SN), *S. lineare* (SL) and *Ballantinia antipoda* (BA) Relative to the Reference Ancestral Crucifer Karyotype (ACK). In the main panel of the image, each of the three modern karyotypes is presented in a radial layout. Within each of the three karyotypes, ideograms are ordered and oriented in the outward direction (corresponding to the same counter-clockwise scale progression of Figure 3). Each line connects a pair of genomic positions on two different modern genomes that are syntenically related to the same genomic block in the ACK. For example, the light-blue line at the top of the figure between SL and SN corresponds to synteny with the genomic block U2 on AK7. Each of the eight small panels shows synteny relationships between the three modern genomes for a specific ancestral chromosome (AK1-8).

Supplemental Figure 2. The Unique Rearrangement of the AK8(#1)-like Homoeologue Shared by All Analyzed Species. This rearrangement was mediated by two subsequent paracentric inversions involving two thirds of genomic block W1 and a major part of X1. In *S. lineare*, block V1 underwent a secondary translocation to another chromosome. The rearrangement not shown for *Arabidella eremigena* and *Blennodia canescens*.

Supplemental Figure 3. Phylogeny of the Malate Synthase (*MS*) (TrN + Γ + I) Showing the Position of Sequences from the Australian Species (in Bold) in the Context of Other Brassicaceae Taxa. Clade posterior probabilities < 0.5 are not shown. Tribal classification follows Al-Shehbaz et al. (2006). 'a1' identifies the Camelineae gene copy present in the genomes of Australian Brassicaceae (a2 gene copy was not detected in this analysis).

Supplemental Figure 4. Maternal Phylogeny (Chronogram) of Australian Genera *Stenopetalum*, *Ballantinia*, and *Arabidella* in the Context of Other Brassicaceae Taxa Resulting from the Partitioned Analysis of the Genes *rbcL* (K81uf + Γ + I), *nad4* (TVMef + Γ + I), *matK* (TVM + Γ + I), and *ndhF* (TVM + Γ + I) in BEAST. Clade posterior probabilities < 0.5 are not shown. The analysis included representatives of the three major Brassicaceae phylogenetic lineages (I-III; Al-Shehbaz et al., 2006; Couvreur et al., 2010) and nine outgroup taxa representing the crown group of the Brassicales (Wang et al., 2009), i.e. *Batis, Floerkea, Tropaeolum, Moringa, Carica, Reseda, Tovaria, Capparis*, and *Cleome*. Tribal classification follows Al-Shehbaz et al. (2006) and Couvreur et al. (2010).

Supplemental Figure 5. Comparison of the Estimated Time of Original Divergence Between the Parents that Were Involved in the Allopolyploid Event (A) and the Estimated Time of the Event (B) Based on the Analysis of Three Nuclear Genes. The dashed vertical lines represent the mean of median estimates. The 'b' represents the divergence between the two parental genome copies prior to the WGD, whereas 'a1' and 'a2' represent the two genome copies present in the Australian Camelineae species and suggest a minimal age for the mesopolyploid event(s) (see Figure 4). *Stenopetalum velutinum*, involved in a more recent polyploid event, was not included in the estimations.

Supplemental Figure 6. Reconstructed Karyotypes of *Transberingia bursifolia* (n = 8) and *Crucihimalaya wallichii* (n = 8). The karyotypes resembling the Ancestral Crucifer Karyotype (ACK) were reconstructed by comparative chromosome painting using *Arabidopsis thaliana* BAC contigs as probes. The 24 genomic blocks (GB) are indicated by uppercase letters (A to X) and colored according to their positions on chromosomes AK1 to AK8 of the ACK (Figure 1D). Downward-pointing arrows indicate the opposite orientation of GBs compared with the position in the ACK, i.e. inversions.

Supplemental Table 1. Ancestral Genomic Blocks (GB) of the Ancestral Crucifer Karyotype (ACK) identified on chromosomes of *Stenopetalum nutans* (chromosomes SN1-SN4), *S. lineare* (SL1-SL5) and *Ballantinia antipoda* (BA1-BA6). Details on corresponding BAC contigs of *Arabidopsis thaliana* are given.

SN/SL/BA		Position of GB on	A. thaliana Boundary BAC Clones ^b		No. of Used	A. thaliana
Chromosome	GB	Ancestral			A. thaliana	BAC Contig
		Chromosomes ^a			BAC Clones	Size (bp) ^b
		Stenope	talum nutan	s (n = 4)		
	01	AK6	F6N15	T1J1	24	2500000
	Nla	AK5	T26I12	F24M12	12	1470000
	M1b	AK5	F3A4	T3A5	2	570000
	T1	AK7	F25E4	F18A5	12	1100000
	S1	AK7	F5H8	MPK23	30	2400000
	R1a	AK6	F7J8	F15N18	17	3700000
SN1	Ala	AK1	F22M8	T29M8	29	600000
	B1b	AK1	T16E15	T23E23	3	950000
	Alb	AK1	T25K16	T1N6	2	700000
	Blc	AK1	F3I6	F12K21	21	3800000
	Bla	AK1	F6F9	F16L1	5	950000
	J2a	AK4	T6A23	F18A8	20	3280000
	D2	AK2	T12P18	F12K22	17	2300000
	E2	AK2	T23K8	F23A5	29	6200000
	R2	AK6	F7J8	T6G21	33	7400000
	Q2	AK6	T20O7	T8M17	17	2600000
	E1b	AK2	F1B16	F23A5	9	1550000
	A2	AK1	T25K16	T29M8	31	6700000
	P2	AK6	T3H13	F8L21	11	1300000
SN2	02	AK6	F6N15	T1J1	24	2500000
	V2	AK8	K23F3	MBD2	28	2400000
	Ela	AK2	F25A4	T23K8	20	4650000
	D1	AK2	T12P18	F12K22	17	2300000
	H2	AK3	T10F5	F5H14	16	3200000
	G2	AK3	F1O13	T25N22	5	1300000
	F2	AK3	MWL2	T4P13	46	9200000
SN3	W2	AK8	K21P3	K9B18	26	4300000
	X2	AK8	MSL3	K9I9	14	2500000
	R1b	AK6	MXC9	T6G21	16	3700000
	Q1	AK6	T2007	T8M17	17	2600000
	P1	AK6	T3H13	F8L21	11	1300000
	N1b	AK5	T26I12	F16M2	12	2900000
	F1	AK3	T4P13	MWL2	46	9200000
	G1	AK3	F1O13	T25N22	5	1300000
	H1	AK3	F5H14	T10F5	16	3200000
	I2	AK4	F3K23	F8N16	16	1640000
	C1	AK1	T6H22	F2J6	25	4600000
	B2	AK1	F6F9	F12K21	29	5700000
	J2b	AK4	F13I13	T8I13	15	3280000
	C2	AK1	F2J6	T6H22	25	4600000

Position of GB on No. of Used A. thaliana SN/SL/BA A. thaliana Boundary GB Ancestral A. thaliana BAC Contig **BAC Clones^b** Chromosome **Chromosomes**^a **BAC Clones** Size (bp)^b 400000 F2I9 K2 AK5 F3C11 7 2900000 AK5 T4A2 28 L2 MJL14 T10D17 2700000 M2 AK5 F3A4 12 4400000 N2 AK5 F24M12 F16M2 18 8700000 U1 AK7 T5J17 T6K21 38 T4A2 MJL14 28 2900000 L1 AK5 400000 K1 AK5 F2I9 F3C11 7 AK5 T10D17 F2K15 11 2160000 M1a I1 F3K23 2100000 AK4 F8N16 16 8200000 AK4 F6K5 T8I13 35 J1 X1b AK8 K9I9 5 500000 SN4 K14B20 W1b AK8 MGN6 K9B18 14 2900000 9 2000000 X1a AK8 K19O4 MUP24 AK8 MNC6 K21P3 13 1400000 W1a V1 K23F3 28 AK8 MBD2 2400000 S2 AK7 MPK23 30 F5H8 2400000 T2 F25E4 F18A5 12 1100000 AK7 8700000 U2 AK7 T6K21 T5J17 38 Stenopetalum lineare (n = 5)R2b AK6 F15N18 17 3700000 F7J8 MPK23 30 2400000 S2 AK7 F5H8 V1 AK8 MBD2 MGC1 28 2400000 J2b AK4 F3G5 T8I13 17 2700000 SL1 G1 AK3 F1O13 T25N22 5 1300000 F1b AK3 MWL2 F11B9 30 4600000 T25K16 T29M8 A1 AK1 31 6700000 **B**1 AK1 F6F9 F12K21 29 5700000 AK2 F12K22 T12P18 17 D2 2300000 F23A5 E2 29 6200000 AK2 T23K8 2500000 X2 AK8 K9I9 MSL3 14 W2 AK8 K9B18 K21P3 26 4300000 H1AK3 F5H14 T10F5 16 3200000 C1 AK1 F2J6 T6H22 25 4600000 I2 AK4 F3K23 F19L18 16 2100000 SL2 F13K3 2700000 J2a AK4 F18A8 18 D1 AK2 F12K22 T12P18 17 2300000 T29M8 T25K16 31 6700000 A2 AK1 H2 AK3 F5H14 T10F5 16 3200000 G2 AK3 F1013 T25N22 1300000 5 F2 AK3 MWL2 T4P13 46 9200000 N1 AK5 F24M12 F16M2 18 4400000 M1 AK5 T10D17 F3A4 12 2700000 L1 AK5 T4A2 MJL14 28 2900000 K1 AK5 F2I9 F3C11 7 400000 F19L18 I1 AK4 F3K23 16 2100000 J1a AK4 F18A8 F13K3 18 2700000

Supplemental Data. Mandáková et al. (2010). Plant Cell 10.1105/tpc.110.074526

Position of GB on No. of Used A. thaliana SN/SL/BA A. thaliana Boundary GB Ancestral A. thaliana BAC Contig **BAC Clones^b** Chromosome **Chromosomes**^a **BAC Clones** Size (bp)^b SL3 F6N15 2500000 02 AK6 T1J1 24 2400000 V2 AK8 MBD2 28 MGC1 T2007 2600000 Q2 AK6 T8M17 17 3700000 R2a AK6 MXC9 T6G21 16 8700000 U1 T5J17 T6K21 38 AK7 AK7 F25E4 F18A5 12 1100000 T1 **S**1 MPK23 2400000 AK7 F5H8 30 T4P13 F1a AK3 F13M14 16 4600000 E1 F23A5 29 6200000 AK2 T23K8 F6F9 F12K21 29 5700000 B2 AK1 J1b AK4 F3G5 T8I13 17 2700000 SL4 C2 AK1 F2J6 T6H22 25 4600000 K2 400000 AK5 F2I9 F3C11 7 L2 AK5 MJL14 T4A2 28 2900000 T10D17 F3A4 2700000 M2 AK5 12 N2 4400000 AK5 F24M12 F16M2 18 01 AK6 F6N15 T1J1 24 2500000 P1 T3H13 F8L21 1300000 AK6 11 33 R1 AK6 F7J8 T6G21 7400000 X1b AK8 K14B20 K9I9 5 500000 SL5 W1b K9B18 14 2900000 AK8 MGN6 X1a AK8 K19O4 MUP24 9 2000000 W1a AK8 K21P3 13 1400000 MNC6 T2 AK7 F25E4 F18A5 12 1100000 U2 AK7 T6K21 T5J17 38 8700000 Ballantinia antipoda (n = 6)T1 AK7 F25E4 F18A5 12 1100000 AK7 T6K21 T5J17 U1 38 8700000 2100000 I2 AK4 F3K23 F8N16 16 BA1 L2 AK5 MJL14 T4A2 28 2900000 K2 AK5 F2I9 F3C11 7 400000 M2 AK5 T10D17 F3A4 12 2700000 N2 AK5 F24M12 F16M2 18 4400000 R2 AK6 F7J8 T6G21 33 7400000 2600000 Q2 AK6 T2007 T8M17 17 V2 AK8 MBD2 K23F3 28 2400000 O2 T1J1 24 2500000 AK6 F6N15 W2 AK8 K21P3 K9B18 26 4300000 BA2 X2 AK8 MSL3 K9I9 14 2500000 Е AK2 F23A5 T23K8 29 6200000 D AK2 F12K22 T12P18 17 2300000 H2 AK3 F5H14 T10F5 16 3200000 G2 AK3 F1013 T25N22 5 1300000 F2 AK3 MWL2 T4P13 46 9200000 J2 AK4 F6K5 T8I13 35 8200000 B1b AK1 F13K9 F5D14 9 1900000

Supplemental Data. Mandáková et al. (2010). Plant Cell 10.1105/tpc.110.074526

SN/SL/BA Chromosome	GB	Position of GB on Ancestral Chromosomes ^a	A. thaliana BAC (Boundary Clones ^b	No. of Used A. thaliana BAC Clones	A. thaliana BAC Contig Size (bp) ^b
BA3	A2b	AK1	F17F16	T29M8	6	2200000
	M1	AK5	T10D17	F3A4	12	2700000
	N1	AK5	F24M12	F16M2	18	4400000
	R1b	AK6	T20K14	T2K12	10	1850000
	X1b	AK8	K14B20	K9I9	5	500000
	W1b	AK8	MGN6	K9B18	14	2900000
	X1a	AK8	K19O4	MUP24	9	2000000
	W1a	AK8	MNC6	K21P3	13	1400000
	V1	AK8	MBD2	K23F3	28	2400000
	S	AK7	F5H8	MPK23	30	2400000
	01	AK6	F6N15	T1J1	24	2500000
	P1	AK6	T3H13	F8L21	11	1300000
	Q1	AK6	T20O7	T4C12	17	2600000
	R1a	AK6	T6G21	T20K14	11	3700000
BA4	C2	AK1	F2J6	T6H22	25	4600000
	Ala	AK1	T25K16	F19K19	25	4500000
	B1c	AK1	F6N18	F12K21	6	1900000
	T2	AK7	F25E4	F18A5	12	1100000
	R1c	AK6	F7J8	T2K12	13	1850000
	U2	AK7	T6K21	T5J17	38	8700000
	Bla	AK1	F28L5	F6F9	14	1900000
	Alb	AK1	F17F16	T29M8	6	2200000
	L1	AK5	MJL14	T4A2	28	2900000
BA5	K1	AK5	F2I9	F3C11	7	400000
	C1	AK1	F2J6	T6H22	25	4600000
	H1	AK3	F5H14	T10F5	16	3200000
	G1	AK3	F1O13	T25N22	5	1300000
	F1	AK3	MWL2	T4P13	46	9200000
	A2a	AK1	T25K16	F3O9	25	4500000
BA6	B2	AK1	F6F9	F12K21	29	5700000
	I1	AK4	F3K23	F8N16	16	2100000
	J1	AK4	F6K5	T8I13	35	8200000

^a 24 genomic blocks (A-X) on the eight ancestral chromosomes (AK1-8) of the ACK (Schranz et al., 2006).
^b http://www.arabidopsis.org

Supplemental Table 2. Structure and Position of the Eight Ancestral Chromosomes (AK1-AK8) and 24 Genomic Blocks (GBs) of the Ancestral Crucifer Karyotype (n = 8) Within Duplicated Genomes of *Stenopetalum* and *Ballantinia* Species. AK-like association refers to the GB association corresponding to an entire AK chromosome, whereas partial AK-like association indicates the GB association corresponding to an arm of AK chromosome. \clubsuit : conserved GB not forming any AK-like association, split %: GB split into two (a+b) or three (a+b+c) sub-blocks, \bigstar : GB lost.

AK Chromosome	Genomic Block	<i>S. nutans</i> (n = 4)	<i>S. lineare</i> (n = 5)	<i>B. antipoda</i> (n = 6)	
	A1	partial AK1-like assoc.		split ≫ (a+b)	
AK1(#1)	B1	(split ≫ by secondary inversions)	partial AK1-like assoc.	split ≫ (a+b+c)	
	C1		<u> </u>	<u> </u>	
	A2	<u></u>	6	partial AK1-like assoc.	
AK1(#2)	B2		6	(part of A2 translocated)	
	C2			<u> </u>	
AK2(#1)		S anlit (a±h)		×	
		$ \rightarrow $ spin $(a+b)$		~	
AK2(#2)	D2 E2	AK2-like assoc.	AK2-like assoc.	AK2-like assoc. [†]	
	F1		⊁ split (a+b)		
AK3(#1)	G1	AK3-like assoc.	<u></u>	AK3-like assoc.	
	H1		8		
AK3(#2)	F2			AK3-like association	
	G2	AK3-like assoc.	AK3-like assoc.		
	H2				
AK4(#1)	II AK4-like assoc		8	AK4-like assoc	
	J1		≫ split (a+b)		
AK4(#2)	I2	8	<u> </u>	8	
·····	J2	S split (a+b) ≫	≫ split (a+b)	8	
	<u>K1</u>	partial AK5-like assoc.		partial AK5-like assoc.	
AK5(#1)			AK5-like assoc.		
	MI N1	\times split (a+b)	-	partial AK5-like assoc.	
	INI KO	r spiit (a+0)			
	<u>K2</u>				
AK5(#2)	L2	AK5-like assoc.	AK5-like assoc.	AK5-like assoc.	
	M2				
	N2				
	01		partial AK6-like assoc.	partial AK6-like assoc.	
AK6(#1)	P1				
	Ql		×		
		× split (a+b)		× split (a+b+c)	
	02 02	partial AK6-like assoc.			
AK6(#2)	02				
	R2	partial AK6-like assoc.	≫ split (a+b)	partial AK6-like assoc.	
	S1	6		X	
AK7(#1)	T1		AK7-like assoc.	partial AK7-like assoc.	
	82 01		Δ	<u>p</u> †	
AK7(#2)	T2	AK7-like assoc		<u>ه</u>	
11127(112)	U2		partial AK7-like assoc.		

AK8(#1)	V1 W1	AK8-like assoc. (split ≫ by secondary	partial AK8-like assoc.	AK8-like assoc. (split ⊁ by secondary inversions)	
	X1	inversions)	(split ⊁ by secondary inversions)		
	V2	6	6	۵	
AK8(#2)	W2	nontial AV9 like acces	nantial AV2 like agaa	nontial AV9 like acces	
		partial Aro-like assoc.	partial ARO-like assoc.	paruai AKô-like assoc.	

[†] As paralogues of these GBs were lost, the assignment as the #2 copy of AK2 and AK7 is tentative and based on the comparison wih other two species.

 $a^{\dagger} \approx 33\%$ (0.9 Mb in the Arabidopsis thaliana genome) of the block Q1 (2.6 Mb) were lost.

Supplemental Table 3. Bayes Factor (BF) Scores for Different Evolutionary Hypotheses Regarding the Number of Independent Polyploid Events at the Origin of the Australian Species Relative to the Null Hypothesis of Four Independent Origins. Genera within brackets indicate that they share the same polyploid origin for a given hypothesis (they were constrained to be monophyletic in the phylogenetic hypothesis); A – *Arabidella*, B – *Ballantinia*, S – *Stenopetalum*, P – *Pachycladon*. A |BF| > 2 is considered decisive and a positive score means that the alternative hypothesis is better.

Hypothesis	No. Origins	mat	CHS	CAD5	MS
(ABSP)	1	-0.119	0.167	0.078	0.052
(BSP)	2	-0.338	0.07	-0.09	0.014
(ASP)	2	0.542	-0.018	-0.018	0.013
(ABP)	2	-0.351	0.028	0.012	0.086
(ABS)	2	-0.017	0.025	-0.068	0.015
(AB)(SP)	2	0.243	0.039	-0.175	-0.033
(AS)(BP)	2	0.111	0.106	-0.04	0.008
(AP)(BS)	2	0.175	-0.125	-0.129	0.016
(SP)	3	-0.013	0.079	-0.111	0.036
(BP)	3	1.192	0.084	-0.084	0.029
(BS)	3	0.092	0.032	-0.051	-0.033
(AP)	3	1.102	0.101	-0.034	-0.139
(AS)	3	0.041	0.124	-0.114	0.008
(AB)	3	0.002	0.16	-0.152	0.064

Supplemental Table 4. Collection Data of Australian Crucifer Species Used in the Present Study.

Species	Collector/Accession No./Herbarium Sheet No.	Origin		
<i>Arabidella eremigena</i> (F. Muell.) E.A. Shaw	N. Scarlett	Australia, Victoria, Western Creek, Millmerran Old		
<i>Ballantinia antipoda</i> (F. Muell.) E.A. Shaw	MEL 2280901 (J. Thomas 2005, JAJ1421)	Australia, Victoria, Mount Alexander Regional Park		
Blennodia canescens R. Br.	MSB 0288114	Australia, Northern Territory, 27.3 km south of Alice Springs, Airport Road along Old South Road		
<i>Crucihimalaya wallichii</i> (Hook. f. & Thoms.) Al-Shehbaz, O'Kane & Price	M. Hoffmann	Uzbekistan, Shurob (Lysak et al. 2003)		
Stenopetalum anfractum E.A. Shaw	MSB 288363	Australia, Northern Territory, 24°04'07''S, 133°59'30''E		
Stenopetalum lineare R. Br. ex DC.	N. Wong per N. Scarlett, La Trobe University	Australia, Victoria, Terrick Terrick		
Stenopetalum nutans F. Muell.	MSB 76272	Australia, Northern Territory, 22°2'S, 133°27'E		
Stenopetalum nutans	MSB 86929	Australia, Queensland, 25°15′40′′S, 142°39′50′′E		
Stenopetalum velutinum F. Muell.	MSB 288181	Australia, Northern Territory, 24°08'36''S, 134°00'14''E		
<i>Transberingia bursifolia</i> (de Candolle) Al-Shehbaz & O'Kane	E. Schranz (ES 1081)	USA, Idaho, Upper Hot Springs, 45°18′11.6′′N, 114 20′28.7′′W		

MEL - National Herbarium of Victoria, Royal Botanic Gardens, Melbourne

MSB - Millenium Seed Bank, Royal Botanic Gardens, Kew

NT - Northern Territory Herbarium, Alice Springs

Supplemental Table 5. GenBank Accession Numbers for Sequences Used in the Phylogenetic Analyses of the Nuclear Genes *CHS*, *CAD5*, and *MS*.

Species	CHS	CAD5	MS
Aethionema grandiflora	AF112082		
Arabidalla aramiaana	GQ926526,	GQ926501, GQ926503	G0026548 G0026552
Arabiaena eremigena	GQ926528, GQ926529	- GQ926505	0Q920348, 0Q920332
Arabidopsis arenosa	AY612781		
Arabidopsis halleri	AJ619906		
Arabidopsis lyrata ssp.	A 1619890	FI645063	FI645118
lyrata	715017070	13043003	13043110
Arabidopsis thaliana	NC003076	NM_119587.3	NM_120467
Arabis hirsuta	AF112096		
Ballantinia antipoda	GQ926531, GQ926532	GQ926508 - GQ926510	GQ926554
Barbarea vulgaris	AF112108		
Boechera fendleri	AF112090		
Boechera holboellii	FJ645081	FJ645074	FJ645133
Boechera lyallii	AF112099		
Boechera parishii	AF112101		
Boechera stricta	AY612784		
Brassica rapa		AC189325	
Brassica oleracea	AY228486		
Brassica napus			J04468
Capsella bursa-pastoris	AY612785	FJ645064	FJ645128 - FJ645129
Capsella rubella	AF112106		
Cardamine amara	DQ209008		
Cochlearia danica	AF144542		
Transberingia bursifolia ssp. bursifolia	FJ645087	FJ645073	FJ645144
Crucihimalaya himalaica	AY612786		
Crucihimalaya mollissima	FJ645084 - FJ645086	FJ645072	FJ645138
Erysimum handel-mazzettii	DQ409238		
Eutrema sp.	FJ645115		FJ645123
Ionopsidium abulense	AF144542		
Leiospora pamirica	DQ409231		
Lepidium apetalum	FJ645109	FJ645077 - FJ645078	FJ645153
Lepidium campestre	AF144534		
Olimarabidopsis cabulica	AF144533	FJ645071	FJ645149 - FJ645150
Olimarabidopsis pumila	AF112092, AF112093		
Pachycladon exile	FJ645093, FJ645094	FJ645069 - FJ645070	FJ645161 - FJ645162
Pachycladon fastigiatum	FJ645091, FJ645092	FJ645067 - FJ645068	FJ645158 - FJ645159
Parrya nudicaulis	DQ409229		
Physaria fendleri	FJ645107, FJ645108		
Raphanus sativus	EF408924		
Rorippa amphibia	AF144530		
Sisymbrium irio	AF144541		
Solms-laubachia eurycarpa	DO409240		

Species	CHS	CAD5	MS
Solms-laubachia linearis	DQ409230		
Stanon atalum nutang 76272	CO026536	GQ926511 -	GQ926561 -
Stenopetatum nutans 76272	0Q920330	GQ926513	GQ926563
Stanonatalum nutana 86020	CO026528 CO026541	GQ926514 -	GQ926564,
Sienopelalum nulans 80929	0Q920338, 0Q920341	GQ926517	GQ926566, GQ926568
	CO026542	GQ926519,	
Stenopetalum velutinum	GQ920342 -	GQ926520,	GQ926556
	0Q920340	GQ926522, GQ926523	
Thlaspi arvense	AF144535		
Turritis glabra	AF112091		

Supplemental Table 6. GenBank Accession Numbers, Lineage and Tribal Assignments for Taxa Included in the Maternal Phylogenetic Analysis.

Genus / Species	Lineage ^a	Tribe ^a	rbcL	nad4	matK	ndhF
Andinana	A	A	AP009367	EU021242 [AF144354	DQ288726
Aetnionema	Aethionema	Aethionemeae	[grandiflorum]	EU931345 [arabicum]	[grandiflorum]	[saxatile]
	TT · 1	D: 11		EN 150 4010	GQ424575	D0200720
Biscutella didyma	Unassigned	Biscutelleae		FN594818	[didvma]	DQ288738
Berteroa incana	Unassigned	Alvsseae		EU931348	GO424574	AY330097
Lobularia maritima	Unassigned	Malcolmieae	AP009375	GO424689	GO424591	DO288791
Loomana manana	onussigneu	Marconnicae	AM23/033	60 12 1007	GQ121591	DQ200771
Heliophila	Unassigned	Heliophileae	[nubescens]	EU931361 [linearis]	[variabilis]	DQ288775 [sp.]
			[pubescens]		[variabilis]	D0200004
Noccaea caerulescens	Unassigned	Noccaeeae	FN594826	EU931379	GQ424598	DQ288804
	-					[cochleariforme]
Cochlearia acaulis [=	Unassigned	Cochlearieae	FN594827	EU931369	AF144369	DO288785
[onopsidium acaule]	8				[prolongo1]	X
Iberis amara	Unassigned	Iberideae	FN594828	FU931367	GO424589	DQ288781
iberis unuru	Ollassignea	iseridede	11(3) 1020	20751507	80 12 15 05	[semperivens]
Thlaspi arvense	Unassigned	Thlaspideae	FN594829	EU931392	GQ424602	DQ288839
Chamira circaeoides	Unassigned	Unassigned	AM234932	FN594819		
Arabis alpina	Unassigned	Arabideae	D88903 [stelleri]	EU931347	AF144328	DO288731
	0.1100.0110		AP009373		NC009272	DO288765
Draba	Unassigned	Arabideae	[nemorosa]	EU931357 [altaica]	[nemorosa]	[altaica]
			[nemorodu]		AB35/1278	DO288786
Isatis	Lineage II	Isatideae	FN594830	EU931370 [brevipes]	[tinctoria]	[tinctoria]
					[tilletolla]	
Sisymbrium	Lineage II	Sisymbrieae	AY167982 [irio]	EU931385 [loeselii]	AF144366 [irio]	DQ288820
	- • • • • •					
Stanleya pinnata	Lineage II	Schizopetaleae	AY483263	GQ424647	AY483226	DQ288832
Streptanthus	Lineage II	Schizopetaleae	FN594831	EU931387		DQ288835
Sireptantitis	Lineage ii	Semilopenateae	[glandulosus]	[platycarpus]		[squamiformis]
Brassica juncea	Lineage II	Brassiceae	AY167979	AF095246		
Bunnaian	Linaaga II	Draggiaga	AE267640 [nonus]	AF095244 [rapa ssp.		
Brassica	Lilleage II	Diassiceae	Ar207040 [liapus]	chinensis]		
C 1'1	т. п	D ·	AY167981	EU931351	GQ424577	DQ288745
Cakile	Lineage II	Brassiceae	[maritima]	[lanceolata]	[maritima]	[maritima]
Solms-laubachia				0.0.404.645	D.0.4000.00	D 0 0 0 0 0 0
zhongdianensis	Lineage III	Euclidieae		GQ424645	DQ409250	DQ288830
Tetracme						DO288837
auadricornis	Lineage III	Euclidieae	FN594832	EU931390		[namirica]
Chorispora tanalla	Lineage III	Chorisporeae	EN594833	EU031353		DO288753
Anchonium	Enleage III	Chorisporede	11(5)+055	20751555		DQ200755
aliahmaifalium	Lineage III	Anchonieae	FN594834	EU931346		
enchrystjonum			EN1504925			D020077(
Hesperis	Lineage III	Hesperideae	FIN594835	GQ424638 [sibirica]		DQ288776
-	•	*	[sibirica]			[matronalis]
Smelowskia	Lineage I	Smelowskieae	FN594836	EU931360 [altaica]		DQ288774
	8-		[altaica]			[tibetica]
Smelowskia calycina	Lineage I	Smelowskieae	FN594837	EU931386		DQ288828
Descurainia stricta	Lineage I	Descurainieae	FN594838	EU931355		
Descurainia sophia	Lineage I	Descurainieae		GQ424737	GQ424581	DQ288759
Ianhedgea minutiflora	Lineage I	Descurainieae	FN594825	EU931366		DQ288780
	·· ·	D	DO310538			DO288779
Hornungia	Lineage I	Descurainieae	[alpina]	EU931365 [petraea]		[procumbens]
			AM234934	EU931371	AF144359	DO288790
Lepidium	Lineage I	Lepidieae	[africanum]	[latifolium]	[campestre]	[draha]
Armoracia rusticana	Lineage I	Cardamineae	4F020323	GO424684	FN597648	
Armoracia rusticana	Lineage I	Cardaninicae	AI 020323	00424004	AE144220	
Barbarea verna	Lineage I	Cardamineae	AP009370	GQ424683	Ar 144550	DQ288737
	-		A E020224			A E 100 120
Cardamine	Lineage I	Cardamineae	AF020524	AF095252 [scutata]	AF144365	AF 198139
	·· ·		[pensylvanica]		[rivularis]	[angustata]
Nasturtium officinale	Lineage I	Cardamineae	AP009376	GQ424688	FN597649	DQ288801
Rorinna	Lineage I	Cardamineae	AF020328	AF095250 [indica]	AF144355	AF198138
попрри	Lineager	Curauminoue	[sylvestris]	. in 070200 [indica]	[palustris]	[curvipes]
Dimorphocarpa	Lineage I	Physarieae	FN594839	GO424680		DO288763

Genus / Species	Lineage ^a	Tribe ^a	rbcL	nad4	matK	ndhF	
wislizeni							
Physaria	Lineage I	Physarieae	FN594840 [fendleri]	GQ424677 [purpurea]		DQ288813 [floribunda]	
Synthlipsis greggii	Lineage I	Physarieae	FN594841	GQ424753		EU907365	
Crucihimalaya mollissima	Lineage I	Camelineae	FN594843	GQ424831			
Crucihimalaya	Lineage I	Camelineae	D88902 [himalaica]	GQ424734 [rupicola]	AF144356 [himalaica]	AP009372 [wallichii]	
Transberingia bursifolia	Lineage I	Camelineae	FN598779		DQ406759		
Erysimum	Lineage I	Camelineae	AY167980 [capitatum]	GQ424669 [canescens]	DQ409262 [handel- mazzettii]	DQ288766 [capitatum]	
Olimarabidopsis pumila	Lineage I	Camelineae	NC_009267	GQ424672	AF144345	DQ288807	
Turritis glabra	Lineage I	Camelineae	DQ310542	GQ424673	AF144333	DQ288840	
Arabidopsis lyrata	Lineage I	Camelineae	FN594842		AF144342	DQ288730	
Arabidopsis thaliana	Lineage I	Camelineae	NC_000932	Y08501	AF144348	NC_000932	
Capsella bursa- pastoris	Lineage I	Camelineae	FN594844	GQ424665	GQ424578	DQ288748	
Neslia paniculata	Lineage I	Camelineae	DQ310541	GQ424748	GQ424597		
Boechera	Lineage I	Boechereae	FN594845	EU931349 [stricta]	AF144343	DQ288739	
	-		[nolboellii]	. ,	[stricta]	[laevigata]	
Halimolobos	Lineage I	Halimolobeae	[diffusus]	EU931359 [diffusus]	[perplexus]	[diffusus]	
Pennellia micrantha	Lineage I	Halimolobeae	FN594847	EU931381		DQ288811	
T chine that hiter annua	Lineager	Thumberootuc	[micrantha]	[micrantha]		[brachycarpa]	
		Αι	ıstralian endemic spec	ies			
Arabidella			FN597049 [eremigena]	FN594822			
Ballantinia antipoda			FN597048	FN594823			
Stenopetalum nutans			FN594849 [nutans]	FN594820 [nutans]		DQ288833	
Stenopetalum nutans			FN594848 [nutans]	FN594824 [nutans]		DQ288833	
Stenopetalum velutinum			FN594850	FN594821			
		New	Zealand endemic spe	cies			
Pachycladon fastigiatum			FN594851	GQ424668			
Pachycladon novae- zelandiae			FN594852	GQ424667			
	outgroups						
Batis maritima			L22438	GQ449679	AY483219	EU002199	
Capparis			AV167985 [sninosa]	AF451591	EU371772	EU002208	
Cupparis				[lanceolaris]	[spinosa]	[flexuosa]	
Carica papaya			M95671	NC_012116	AY483221	AY483248	
Cleome			AY483268 [viridiflora]	AF451588 [viscosa]	EU371806 [viscosa]	DQ288755 [rutidosperma]	
Floerkea proserpinacoides			L12679	GQ449678	EU002178		
Tropaeolum			L14706 [majus]	GQ449676 [minus]	AY483224 [majus]	AJ236281 [majus]	
Reseda lutea			FJ212219	GQ449675	AY483241	EU002256	
Moringa oleifera			L11359	AF451593	AY483223	AY122405	
Tovaria pendula			FJ212209		AY483242	AY122407	

^a Assignment to main phylogenetic lineages and tribal assignment follow Al-Shehbaz et al. (2006) and Couvreur et al. (2010).

Phylogenetic relationships and comparison with previous studies. Up to now the phylogenetic affiliation of the analyzed Australian species was unclear. Phylogenetic analysis of *Stenopetalum* placed the taxon within the crucifer Lineage I (Couvreur et al., 2010), perhaps into Camelineae (Beilstein et al., 2008; Al-Shehbaz et al., 2006); *Arabidella* was only tentatively assigned to Cardamineae (Al-Shehbaz et al., 2006). The present study shows that in all inferred phylogenies the Australian and *Pachycladon* species are interspersed within the Camelineae, Boechereae and Halimolobeae of Lineage I (Figure 4 and Supplemental Figure 3 and 4). The same genera and tribes were also found as the closest relatives of the few Australian and New Zealand genera included in the eight marker data set of Couvreur et al. (2010). As the latter two tribes are morphologically, cytogenetically and geographically well-defined (Koch et al., 2001), *Arabidella* (6 species), *Ballantinia* (1 sp.), *Stenopetalum* (12 spp.) and *Pachycladon* (11 spp.) should be included into the polyphyletic Camelineae.

As the closest relatives of the Australian Camelineae genera were identified the New Zealand *Pachycladon* species (n = 10). Together the two groups form a monophyletic clade in the *MS* and combined maternal phylogenies. This raises the question whether the two groups descended from a common allopolyploid ancestor, with *Pachycladon* species not having undergone the same chromosome number reduction seen in the Australian genera. This question remains unanswered given that Bayes factor analyses (Supplemental Table 3) were unable to find conclusive evidence for more than one WGD event.

Although less taxa have been analyzed in the nuclear gene analyses, the topology of the nuclear gene trees generally agrees with the maternal phylogeny with the exception of the Physarieae which are placed within Lineage I in the maternal phylogeny (Supplemental Figure 4; see also Couvreur et al., 2010; Koch et al., 2001) but outside Lineage I (along with *Aethionema*) as sister to the rest of the Brassicaceae in the *CHS* tree (Figure 4). Some minor incongruencies in tree topology between nuclear and maternal DNA phylogenies have also been observed by Koch et al. (2001), and interestingly, for the position of *Physaria* by Beilstein et al. (2008). For the maternal phylogeny we have used a more comprehensive taxon sampling than for the nuclear gene trees. It has been shown earlier that an increased taxon sampling greatly reduces phylogenetic errors (Zwickl and Hillis, 2002). Hence, an increased taxon sampling could eventually change the position of *Physaria* in the nuclear gene trees.

Supplemental References

- Al-Shehbaz, I.A., Beilstein, M.A., and Kellogg, E.A. (2006). Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 259: 89–120.
- Beilstein, M.A., Al-Shehbaz, I.A., Mathews, S., and Kellogg, E.A. (2008). Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Amer. J. Bot. **95**: 1307–1327.
- Couvreur, T.L.P., Franzke, A., Al-Shehbaz, I.A., Bakker, F.T., Koch, M.A., and Mummenhoff, K. (2010). Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27: 55–71.
- Koch, M., Haubold, B., and Mitchell-Olds T. (2001). Molecular systematics of the Brassicaceae: evidence from coding plastidic *matK* and nuclear *Chs* sequences. Amer. J. Bot. 88: 534–544.
- Lysak, M.A., Pecinka, A., and Schubert, I. (2003). Recent progress in chromosome painting of *Arabidopsis* and related species. Chromosome Res. 11: 195-204.
- Schranz, M.E., Lysak, M.A., and Mitchell-Olds, T. (2006). The ABC's of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends Plant. Sci. 11: 535–542.
- Wang, H., Moore, M.J., Soltis, P.S., Bell, C.D., Brockington, S.F., Alexandre, R., Davis C.C., Latvis, M., Manchester, S.R., and Soltis, D.E. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl. Acad. Sci. USA 106: 3853–3858.
- Zwickl, D.J., and Hillis, D.M. (2002). Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology **51**: 588–598.