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Abstract
The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intri-

cate polyploid complex with large phenotypic variation and its evolutionary relationships still

poorly resolved. In order to get insight into the geographic distribution of ploidy levels and

assess the taxonomic value of genome size data, we determined C- and Cx-values in 628

plants representing all currently recognized European species collected from 197 popula-

tions in 29 European countries. The flow cytometric estimates were supplemented by con-

ventional chromosome counts.

In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x–

18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A.
alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes

ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to

Central and Northern Europe, which harboured only limited cytological variation, a much

more complex pattern of genome sizes was revealed in the Mediterranean, particularly in

Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized spe-

cies were delimited based on genome size values and phenotypic variation. Whereas our

data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean popula-

tions traditionally referred to as diploid A. odoratum were shown to be cytologically distinct,

and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In

contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear

DNA. Intraspecific variation in genome size was observed in all recognized species, the

most striking example being the A. aristatum/ovatum complex.

Altogether, our study showed that genome size can be a useful taxonomic marker in

Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary rela-

tionships in this challenging grass genus.
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Introduction
Great strides have been made in recent years in advancing our understanding of the role of
recent and ancient genome duplication in the evolution of land plants, particularly angio-
sperms [1–3]. The essential prerequisite for any biosystematics study dealing with ploidy-
variable plant groups is the detailed knowledge of overall ploidy diversity and geographic dis-
tribution of cytotypes [4–6]. Among other information, cytogeographic data can give insight
into the rate of polyploid formation, ecological differentiation of cytotypes and/or the fre-
quency of their reproductive interactions (e.g. [7]).

In addition, because of its effects on phenotypic and reproductive traits, ploidy may serve as
an important criterion guiding taxonomic delineation and may aid in interpretation of plants
phylogenetic relationships [8–9].

Or perception of ploidy diversity in natural populations has been dramatically reshaped
over the last two decades, after the advent and increased usage of DNA flow cytometry (FCM).
This high-throughput analytical tool offers a rapid and precise method for estimating the
amount of nuclear DNA across multiple populations and over large spatial scales [10–11].
Because of the rate at which samples can be processed and screened, FCM is also valuable as an
exploratory tool in groups that are in need of taxonomic revision. Estimated genome size values
not only allow ploidy levels to be inferred but may also provide insights into evolutionary rela-
tionships and genome constitutions of investigated species [12]. Specifically, genome size may
help resolve conflicting hypotheses about the origin of polyploids (auto- vs. allopolyploidy)
and identify putative parental combinations in hybridogenous species [13–18].

Genome duplication has been recognized as a driving force behind the evolutionary success
of several angiosperm lineages, including Poaceae. Comparisons of diversification rates in
grasses suggest that polyploidization likely led to a dramatic increase in species richness in this,
the fifth largest plant family [19]. Evolutionary consequences of genome doubling in Poaceae
have been extensively explored in crops (e.g. Triticum: [20],Hordeum: [21] Oryza: [22]), wild
relatives of economically important cereals (Brachypodium: [23]) and weeds (e.g. Spartina:
[24]). In contrast, the evolutionary significance of polyploidy is still little-known in many other
grass genera, including Anthoxanthum.

Anthoxanthum L. (sweet vernal grass) is a relatively small genus of 15–18 species native to
Europe and mountains of Asia and Africa [25–26]. At least two Anthoxanthum species (A.
odoratum and A. aristatum) have been either deliberately or accidentally introduced to North
America and Australia, where the species can occupy extensive areas (e.g. [27–28]). Despite the
low number of recognized species, the taxonomy of the genus is non-trivial and in flux (e.g.
[29]). Most traditional taxonomic treatments (e.g. [30–32]) recognize seven Anthoxanthum
species in Europe, which can be divided into two groups according to their life forms. Whereas
perennials (comprising A. amarum BROT., A. alpinum A. LÖVE et D. LÖVE, A.maderense TEPP-

NER, and A. odoratum L.) are widely distributed and show variation in ploidy levels, their
annual counterparts (comprising A. aristatum BOIS., A. gracile BIV., and A. ovatum LAG.) are
exclusively diploid and largely restricted to the Mediterranean basin [31,33]. Several attempts
have been made in recent years to clarify the taxonomy of European Anthoxanthum by using
molecular and/or morphometric approaches [29,34–36]. These authors, among others, lumped
the phenotypically similar annuals A. aristatum and A. ovatum into the A. aristatum/ovatum
complex and stated that, based on genetic data, A. alpinum would better be regarded as a sub-
species of A. odoratum.

Taxonomic complexities encountered in European members of the genus can at least partly
be explained by the incidence of polyploidy. Tetraploids (2n = 4x = 20) clearly prevail in
A. odoratum and rarely occur in A. alpinum [37], while A. amarum is a high-polyploid with
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varying numbers of somatic chromosomes (2n = 80–90; [38]). Diploid plants morphologically
resembling A. odoratum (referred to as Cretan diploid [39] or diploid A. odoratum [40–41])
are known from the Mediterranean region, but their taxonomic status remains uncertain and
needs to be clarified. Allozyme and karyotypic analyses [40,42–43] fairly conclusively showed
that the rare tetraploids in A. alpinum are of autopolyploid origin. In contrast, there is no con-
sensus on the origin of tetraploid A. odoratum, despite recent efforts to address this issue using
molecular markers [29]. The proposed hypotheses to explain the evolutionary history of this
most widespread Anthoxanthum species include autopolyploidization of A. alpinum [39,42],
autopolyploidization of an unknown diploid Mediterranean taxon [44], or allopolyploidization
involving A. alpinum and some other Mediterranean representative of the genus [40,45–46].
The origin of the highly polyploid A. amarum, endemic to the north-western part of the Ibe-
rian Peninsula [47], is enigmatic, although [35] it has been hypothesized that it likely arose by
repeated polyploidization events of 4x A. odoratum.

Although the European species of Anthoxanthum have recently been subjected to a series of
morphometric and genetic investigations (e.g., [29,34–36,48]), many questions surrounding
their evolutionary history have not been satisfactorily resolved. In addition, several published
papers (e.g. [29,35]) neglected karyological properties of the studied samples, which may ren-
der evolutionary interpretations problematic.

In this study, we aimed at investigating ploidy and genome size variation of the genus across
its European range, and using the data to infer likely scenarios of the origin of polyploid cyto-
types. Specifically, we addressed the following questions: (1) Which ploidy levels can be found
among European members of Anthoxanthum, based on representative geographic and taxo-
nomic sampling? (2) What is the range of genome size variation, and how does it correspond
to currently recognized taxonomic groups? (3) What is the value of genome size data as a spe-
cies-specific marker for taxonomic purposes and an indicator of evolutionary relationships?

Materials and Methods

Plant material
A total of 197 Anthoxanthum populations, originating from 29 European countries were sam-
pled during 2006–2015 (Fig 1, S1 Table). The sampling was designed to cover the entire distri-
bution range of the genus in Europe and to include all currently recognized taxa; a major
sampling effort was directed at southern Europe, which exhibits the greatest diversity [41]. At
each locality, whenever possible, the following material was collected for each taxon distin-
guished visually: (1) flowering plants (1–17 individuals, depending on the population size)
with well-developed intact leaves for FCM estimation of nuclear genome size–tissue was stored
at 4°C in a plastic bag and FCM analyses were performed within a week (usually within a few
days); (2) a single large tuft, for subsequent cultivation in the experimental garden of the Insti-
tute of Botany, Academy of Sciences in Průhonice, the Czech Republic (N 49°59.7´ E 14°34.0´,
315 m a.s.l.); (3) ripe caryopses from several individuals, as back-up material; (4) herbarium
vouchers (deposited in the PRC).

No special permissions were required for the field study, because of (1) no endangered
plants were involved in the study and (2) all localities had no protected status and were accessi-
ble by public without any restrictions.

Plants (see S1 Appendix for some scans) were identified on the basis of their morphology,
following determination keys provided by [31–32,49–50]. We treated A. aristatum and A. ova-
tum as one species complex, based on the results of [34,36]. In addition to species appearing in
the abovementioned taxonomic literature, we recognized one more group (tentatively called
“Mediterranean diploid”), which we found in SE Europe and encompassed perennial diploids
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morphologically resembling A. odoratum occurring there. Distributional map was prepared
using DMAP version 7.2e.

Flow cytometry
Holoploid and monoploid genome sizes [51] were estimated by means of propidium iodide
FCM. For each plant, one young, intact leaf, approximately 1 cm in length, was chopped along
with an appropriate amount of an internal reference standard using a new razor blade in a
Petri dish containing 0.5 ml of ice-cold Otto I buffer (0.1 M citric acid, 0.5% Tween 20) [52–
53]. The resulting suspension was filtered through a 42-µm nylon mesh and incubated at room

Fig 1. Distribution of species and cytotypes of Anthoxanthum in the area studied, based on analysis of 628 individuals from 197 populations
sampled in 29 European countries.

doi:10.1371/journal.pone.0133748.g001
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temperature for at least 5 min. After incubation, the suspension was stained by using 1 ml of
Otto II buffer (0.4 M Na2HPO4 � 12 H20) supplemented with the intercalating fluorescent dye
propidium iodide, RNAase IIA (both at the final concentrations of 50 µg/ml) and β-mercap-
toethanol (2 µl/ml). The samples were stained for 5 min at room temperature and analysed
using a Partec CyFlow cytometer (Partec GmbH., Münster, Germany) equipped with a 532 nm
diode-pumped solid-state laser Cobolt Samba (Cobolt AB, Solna, Sweden) as the source of
excitation light. Fluorescence intensity of 5000 particles was recorded, and the data were
analysed using Partec FloMax Software version 2.4d. Pisum sativum ‘Ctirad’ (2C = 8.76 pg;
[53]) served as the primary reference standard. A secondary standard (Vicia faba ‘Inovec’,
2C = 26.60 pg) was used to analyse A. amarum and several accessions of the A. aristatum/ova-
tum complex because of large genome size and/or similarity in C-values between the sample
and primary standard. Nuclear genome size of Vicia faba was recalibrated using Pisum sati-
vum, based on repeated measurements on different days. In total, 628 Anthoxanthum plants
were subjected to FCM analysis, and their DNA ploidy levels (sensu [54]) were inferred from
their estimated DNA C-values, using karyologically verified plants as reference points.

Chromosome preparations and counting
Actively growing, young roots were harvested from the cultivated plants, pre-treated with ice-
cold water for 12 h, fixed in ethanol/acetic acid (3:1, v/v) fixative for 24 h at 4°C and stored at
-20°C until further use. Selected root tips were rinsed in distilled water (twice for 5 min) and
citrate buffer (10 mM sodium citrate, pH 4.8; twice for 5 min), and digested in 0.3% (w/v) cellu-
lase, cytohelicase and pectolyase (all Sigma-Aldrich, St Louis, MO, USA) in citrate buffer at
37°C for 90 min. After digestion, individual root tips were dissected on a microscope slide in
approximately 10 μl acetic acid and covered with a cover slip. The cell material was then spread
evenly using tapping, thumb pressing and gentle flame-heating. Finally, the slide was quick fro-
zen in liquid nitrogen and the cover slip flicked off with a razor blade. Slides were fixed in etha-
nol/acetic acid (3:1) and air-dried. Chromosomes were counterstained with 2 μg/ml DAPI in
Vectashield (Vector Laboratories, Peterborough, UK). Preparations were analysed and photo-
graphed using an Olympus BX-61 epifluorescence microscope and CoolCube CCD camera
(Metasystems, Altlussheim, Germany).

Chromosome numbers were successfully determined in all taxa but A. amarum (68 individ-
uals from 22 populations).

Data analysis
Genome size data were analysed using SAS 9.1.3 for Windows (SAS Institute Inc., Cary, USA).
The general linear model (procedure GLM) was used to assess differences in DNA C-values
among taxonomic groups, and Tukey’s test was applied to compare mean values. The Spearman-
rank correlation coefficient (procedure CORR) was computed to test the association between
genome sizes and geographic locations (latitude, longitude and altitude) of sampled populations.

Results

Ploidy variation and cytogeography
Four DNA ploidy levels were detected among the 628 analysed individuals from 197 populations:
2x, 3x, 4x, and a high polyploid with ~16–18 basic chromosome sets (Table 1). Karyological anal-
yses of 68 individuals yielded three euploid (2n = 2x = 10, 2n = 3x = 15, and 2n = 4x = 20) and
one aneuploid (2n = 16) counts, and–except for the highly polymorphic A. aristatum/ovatum
complex–were fully consistent with ploidy estimates inferred from FCMmeasurements (Table 1,
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S2 Appendix). Whereas two ploidy levels occurred in A. alpinum (2x + 4x) and A. aristatum/ova-
tum (2x + 3x), other taxa were either exclusively diploid (A. gracile, A.maderense, and the “Medi-
terranean diploid”) or tetraploid (A. odoratum); the exact ploidy status of the highly polyploid A.
amarum analysed in our study remains unknown. Most of the investigated populations were
ploidy- and taxon-uniform, although we detected seven mixed populations, comprising three
taxa combinations (Fig 1, S1 Table): (i) 2x A. alpinum + 4x A. odoratum (pops. AT03, CZ01), (ii)
4x A. alpinum + 4x A. odoratum (pops. FR05, CH05, CH06), and (iii) 4x A. odoratum + highly
polyploid A. amarum (pops. PT08, ES15).

The most widespread cytotype across the investigated area was 4x A. odoratum, which
occurred from Madeira and central Spain to Iceland and southern Scandinavia (Fig 1). The
other tetraploid (4x A. alpinum) was much more geographically restricted, being found only
in France and Switzerland. Whereas only two perennial species (largely diploid A. alpinum
and 4x A. odoratum) occurred in the northern half of Europe, the southern part of the conti-
nent hosted much higher taxonomic diversity (and also genome size diversity, see below).
Evolution in southern Europe had largely proceeded at the diploid level, with exceptions being
the highly polyploid A. amarum sampled in Portugal and Spain, and rare triploids (+ aneu-
ploids) encountered in A. aristatum/ovatum in the Iberian Peninsula (Fig 1). In addition to
fairly widely distributed species, there were two narrow endemics in southern Europe, namely
the perennial A.maderense (restricted to Madeira) and the little-known annual A. gracile (sam-
pled by us only in Crete). South-Eastern Europe (the Balkan Peninsula, Crete, Italy) was domi-
nated by the perennial taxon tentatively referred to as “Mediterranean diploid”, which there
seems to replace the morphologically similar but tetraploid A. odoratum. “Mediterranean dip-
loid” extends to Corsica where it meets 2x A. aristatum/ovatum and 4x A. odoratum (all three
taxa are, however, sorted along an altitudinal gradient), making Corsica, according to our cur-
rent knowledge, the region with the greatest taxonomic diversity.

Inter- and intra-specific variation in nuclear genome size
Mean 2C-values varied from 5.52 pg in diploidA. alpinum to 44.75 pg in highly polyploid
A. amarum, spanning more than an 8-fold range (Fig 2A). Mean monoploid genome sizes
(1Cx-values) ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploidA. gracile (an

Table 1. Summary of recognized Anthoxanthum species, their ploidy levels, genome sizes (both 2C-values and 1Cx-values given in DNA pico-
grams), intraspecific/intraploidy genome size variation and numbers of somatic chromosomes.

Life span Taxon DNA ploidy level No. of
individuals
analysed/ No.
of populations

Mean 2C-
value ± s.d.
[pg]

2C-value
range [pg]

2C-value
variation
(max/min, %)

Mean 1Cx
value ± s.d.
[pg] *

Chromosome
number (2n) / No.
of individuals
analysed

annuals A. aristatum/ovatum 2x + 3x + aneuploids 147/14 7.659 ± 0.568 6.762–11.143 64.8 (3.776 ± 0.314B) 10/25, 15/1, 16/2

A. gracile 5/2 18.378 ± 0.409 17.87–18.86 5.5 9.189 ± 0.205A 10/1

perennials A. alpinum 2x 79/33 5.517 ± 0.083 5.361–5.692 6.2 2.759 ± 0.041E 10/12

4x 20/8 10.991 ± 0.171 10.524–11.344 7.8 2.748 ± 0.043E 20/1

A. maderense 2x 51/5 6.946 ± 0.094 6.795–7.378 8.6 3.473 ± 0.047C 10/1

ˮMediterranean
diploid“

2x 121/36 7.425 ± 0.121 7.161–7.871 9.9 3.713 ± 0.061B 10/14

A. odoratum 4x 177/78 12.872 ± 0.330 12.01–13.744 14.4 3.218 ± 0.082D 20/11

A. amarum 16x-18x 28/21 44.745 ± 2.173 39.513–49.74 25.9 ** -

* Different letters indicate groups of taxa that are significantly different at α = 0.05 in Tukey HSD test.

() Mean 1Cx-value for the A. aristatum/ovatum complex was calculated from 25 diploid individuals with known chromosomes number (2n = 10).

** Mean Cx-value in the highly polyploid A. amarum could not be reliably determined due to the lack of exact chromosome counts.

doi:10.1371/journal.pone.0133748.t001
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Fig 2. Box-and-whisker plots showing holoploid genome sizes (2C-values) for eight groups representing different species and cytotypes of
Anthoxanthum. (A) (ploidy categories are marked as “2x”–diploids, “4x”–tetraploids and “poly”–high polyploid). (B) Box-and-whisker plots showing
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almost 3.4-fold range, Fig 2B). (NB: 1Cx-values for highly polyploid A. amarumwere not calcu-
lated, due to the lack of exact chromosome counts, which precluded reliable inference of ploidy
level).

The most distinct species with respect to genome size was the annual Mediterranean
endemic A. gracile, which possessed a considerably larger genome than any other European
Anthoxanthum (Table 1). The other annual, the species complex (A. aristatum/ovatum), was
excluded from statistical comparisons due to its unusually large intraspecific variation in
genome size (S1 Table, Table 1, Fig 3A). All perennial taxa for which Cx-values were available
differed significantly in this variable (Table 1). In fact, genome sizes of perennials formed four
non-overlapping groups, arranged in ascending order as follows: A. alpinum–A. odoratum–A.
maderense–“Mediterranean diploid”. Diploid and tetraploid cytotypes of A. alpinum shared
very similar monoploid genome sizes, which provided support for inferring that the tetraploids
are of autopolyploid origin. In contrast, Cx-values of 4x A. odoratum were distinct from those
of any analysed diploid species, making autopolyploidy for this widespread tetraploid unlikely.

Intraspecific variation in genome size was observed in all analysed taxa (Table 1). 2C-values
varied from 5.5% in A. gracile up to 64.8% in the polymorphic complex of A. aristatum/ovatum
(Figs 3 and 4). In species collected from sufficiently large geographic areas, the intraspecific
variation was non-randomly distributed and showed highly significant negative correlation

monoploid genome sizes (1Cx-values) for six groups representing different species and cytotypes of Anthoxanthum (Cx-values in the high-polyploid A.
amarum and the A. aristatum/ovatum complex could not be calculated due to uncertain ploidy levels).

doi:10.1371/journal.pone.0133748.g002

Fig 3. Variation in holoploid genome sizes (sorted according to increasing 2C-values) in (A) the A. aristatum/ovatum complex (total variation
64.8%); (B) 4x A. odoratum (total variation 14.4%); (C) ‘Mediterranean diploid’ (total variation 9.9%); and (D) 2x A. alpinum (total variation 6.2%).
Individuals with determined numbers of somatic chromosomes are indicated by solid circles. See S1 Table for population details.

doi:10.1371/journal.pone.0133748.g003
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with latitude (in 2x A. alpinum and 4x A. odoratum) and a less pronounced but still significant
association with altitude (positive in 2x A. alpinum and negative both in the “Mediterranean
diploid” and 4x A. odoratum) (Table 2, S1 Fig). Narrow geographic distribution precluded per-
forming the same analyses for 4x A. alpinum, A. gracile, or A.maderense. Anthoxanthum aris-
tatum/ovatum showed not only intraspecific but also considerable intrapopulation variation in
genome size (up to 37% in pop. ES09; S1 Table, Table 1).

Fig 4. Flow cytometric histograms demonstrating genuine intraspecific variation in holoploid genome size (simultaneous analysis of individuals
with distinct DNA C-values). (A) 4x A. odoratum – pops. CZ03 + HR03 (difference 8.0%); (B) ‘Mediterranean diploid’ – pops. ME05 + IT03 (difference
3.5%); (C) A. amarum – intrapopulation variation in pop. PT13 (difference 8.2%); (D) A. aristatum/ovatum – intrapopulation variation in pop. ES09 (difference
10.7%, both individuals with 2n = 10).

doi:10.1371/journal.pone.0133748.g004

Nuclear Genome Size Variation in Anthoxanthum

PLOSONE | DOI:10.1371/journal.pone.0133748 July 24, 2015 9 / 17



Discussion
Our study provided novel insight into ploidy and genome size variation of all currently recog-
nized European members of the genus Anthoxanthum, which we sampled across large geo-
graphic areas. In addition to establishing detailed cytogeographic patterns, we also used flow
cytometric and chromosome data for taxonomic and evolutionary interpretations.

Taxonomic implications
Although the genus Anthoxanthum is well delimited morphologically (see [55]), its infragene-
ric classification is controversial due in part to phenotypic similarities of recognized species,
incongruence between morphological and molecular data, and the fact that most of the pub-
lished studies have been geographically limited (e.g. [34–35]). However, two groups of species
are readily distinguished, based on their life cycle: annuals and perennials [55].

The most distinct perennial with respect to karyological properties is A. amarum, a highly
polyploid (16x-18x) species with an unusually large genome (2C-values varying from 39.51 to
49.74 pg; Table 1) and endemic to the Iberian Peninsula. The other perennials investigated in
our study possessed considerably smaller holoploid genomes (2C = 5.36–13.74 pg) and had
diploid (2n = 10) or tetraploid (2n = 20) somatic chromosomes. Genome size variation was
non-randomly distributed across the sampled range, and we distinguished five non-overlap-
ping genome size groups that reflected the level of ploidy and morphology. Diploid perennials
with the largest genomes (Table 1) were found in countries along the Adriatic Sea (extending
eastwards up to SW Romania) and in Crete and Corsica. They very likely also occur on other
Mediterranean islands not sampled in the current study (see Fig 1). These plants seem to be
well delimited both geographically and karyologically, and we are convinced that they repre-
sent a distinct taxonomic entity. Traditionally, they have been identified as 2x A. odoratum
[39,41–42]. However, our genome size data do not indicate close affinities with the otherwise
exclusively tetraploid A. odoratum. Until the taxonomic status of large-genome perennial Bal-
kan diploids is resolved, we refer to these plants as the “Mediterranean diploid”. Genome size
of the “Mediterranean diploid” (2C = 7.16–7.87 pg) is similar to that of the putative Madeira-
endemic A.maderense (2C = 6.80–7.13 pg). The third group of diploid perennial samples mor-
phologically matched A. alpinum. This species is a near-vicariant of the “Mediterranean dip-
loid” and has a markedly smaller genome (2C = 5.36–5.69 pg). Both taxa likely come into
contact in some parts of the Balkan Peninsula (cf. Fig 1); however, the exact degree of overlap
needs to be established. Considering the large differences in genome size between A. alpinum
and the “Mediterranean diploid” (34% on average), FCM can be used as a reliable and rapid
means to distinguish between these taxonomic groups. Our results support the view that A.
alpinum is a well-defined species with unique genome size and quite distinct phenotype,

Table 2. Spearman’s correlation coefficients with corresponding p-values (in italics, significant values in bold) for population distribution data (lat-
itude, longitude and altitude) andmean population genome sizes (2C-values) for three species with sufficiently large geographic ranges. See also
S1 Fig.

Taxon No. of populations Latitude Longitude Altitude [m a.s.l.]

A. alpinum (2x)
33 -0.775 0.012 0.505

<0.001 0.915 <0.001

”Mediterranean diploid“
36 -0.021 -0.188 -0.411

0.820 0.038 <0.001

A. odoratum (4x)
78 -0.369 -0.009 -0.157

<0.001 0.902 0.037

doi:10.1371/journal.pone.0133748.t002
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despite the fact that a previous morphological and molecular study found little difference
between A. alpinum and A. odoratum [29]. At the tetraploid level, there were two non-overlap-
ping genome size categories (Table 1), corresponding to the morphologically identified A. alpi-
num (2C = 10.52–11.34 pg) and A. odoratum (2C = 12.01–13.74 pg). While polyploids of the
former species showed a relatively narrow distribution range, 4x A. odoratum is the most wide-
spread representative of the genus in Europe. Sympatric populations of both tetraploids were
found in France and Switzerland but, reliable identification was possible based on species-spe-
cific amounts of nuclear DNA (average inter-specific difference ca. 17%).

Annual Anthoxanthum taxa occur only in the Mediterranean. The genome of the poorly
known species A. gracile, which has mostly been reported from central and eastern Mediterra-
nean islands [55], was markedly larger (2C = 17.87–18.86 pg) than that of the complex of A.
aristatum/ovatum (2C = 6.89–11.14 pg). Although A. aristatum and A. ovatum are treated as
separate species in some floras (e.g., [31,33,49]), both show striking within-species phenotypic
variation and their morphological boundaries are vague [30,56]. In addition, AFLP data were
unable to distinguish between A. aristatum and A. ovatum [35], and extensive introgression
was reported in the Iberian Peninsula, where both taxa grow in sympatry [36]. Published data
therefore support the merger of these annual sweet grasses into a highly variable diploid com-
plex of A. aristatum/ovatum [35–36]. Unusually large and rather continuous variation in
nuclear genome size (see Fig 3A), as observed in our study, provides additional evidence for
treating A. aristatum and A. ovatum as a single taxonomic unit.

Origins of polyploids
There are three different polyploid species in the genus Anthoxanthum: 4x A. alpinum, 4x A.
odoratum and 16x-18x A. amarum.

The origin of the highly polyploid A. amarum is uncertain, although [35] presumed that it
may be a derivative of 4x A. odoratum. High intraspecific variation in genome size of A.
amarum (nearly 26%) detected in our study, however, precludes any firm conclusions to be
made based on FCM data, and a combination of cytogenetic and molecular approaches seems
to be necessary to clarify this issue.

Autopolyploid origin has been suggested for 4x A. alpinum based on karyological
[40,42,45], allozyme [43] and morphological [31,56–57] evidence. Our study provides addi-
tional support for this hypothesis by revealing identical mean monoploid genome sizes of dip-
loid (1Cx = 2.76 pg) and tetraploid (1Cx = 2.75 pg) cytotypes of A. alpinum (Table 1).

There has been a long-standing debate as to whether 4x A. odoratum originated via auto- or
allopolyploidization (e.g. [29,35]). Proponents of the first hypothesis have claimed that this tet-
raploid is derived from either 2x A. alpinum (e.g. [58–61]) or an unknown Mediterranean dip-
loid [44]. Assuming the additivity of genome sizes [62], we find the autopolyploid hypothesis
unlikely. Resulting values for hypothetical auto-tetraploids derived from any diploid Anthox-
anthum species differ from the actual amounts of nuclear DNA estimated for 4x A. odoratum
(cf. Table 1).

In allopolyploid scenarios, 2x A. alpinum has usually been suggested as one parent [39–
40,45,63]. Once again, if we accept the additive model of genome size values (see [62] for
details), the most likely second parent according to our dataset is the “Mediterranean diploid”
(Table 1). The sum of mean 2C-values of A. alpinum (5.52 pg) and the perennial “Mediterra-
nean diploid” (7.42 pg) corresponds well to the average holoploid genome size of 4x A. odora-
tum (12.87 pg/2C). Previous karyological studies [41,45] also identified the “Mediterranean
diploid” as the most promising candidate. Theoretically, our data cannot exclude the participa-
tion of A. aristatum/ovatum (suggested by [39]) or A.maderense in the genesis of 4x A.
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odoratum. However, the annual life cycle of A. aristatum/ovatum, narrow distribution range of
A.maderense, and slightly less congruence between theoretical and actual genome size values
of both taxa all speak against this possibility.

Intraspecific variation in nuclear genome size
The issue of intraspecific variation in genome size has been of interest since the 1990s and still
remains somewhat controversial. This debate has been fuelled by numerous early reports of
intraspecific variation that were dismissed by subsequent investigations using the best practice
methodology [64]. Over time, several sources of artefactual variation have been identified,
including instrumental drift, methodological errors, disturbing effects of secondary metabo-
lites, and taxonomic heterogeneity of the investigated material [65]. Although definitely much
less common than once assumed, intraspecific variation in genome size has been recently
revealed, using meticulous methodology, in several angiosperms (e.g. [5,66–69]).

In our study, we detected intraspecific variation in all recognized species (Table 1). The
threshold of 10% was exceeded in three of them, namely A. aristatum/ovatum, A. amarum and
A. odoratum. We argue that our FCMmeasurements are reliable because we strictly followed
the current best practice [53], peaks with very low coefficients of variation were always
achieved and, most importantly, the variation was confirmed in simultaneous analyses of sam-
ples with distinct amounts of nuclear DNA (Fig 4).

Several mechanisms are likely responsible for the observed variation in genome size in
Anthoxanthum. At least part of the variation can be ascribed to chromosomal heterogeneity,
because aneuploidy and/or the presence of supernumerary chromosomes seem to occur in
most, if not all species (see S2 Table). The most variable chromosome counts (2n = 80–90) are
known from a highly polyploid A. amarum [38,70], which in our study was the species with
the second highest variation in genome size (25.9%).

Fairly continuous variation in genome size indicates that chromosomal heterogeneity itself
cannot explain the observed pattern, and differences in the size of individual chromosomes
(i.e., the genuine variation in nuclear DNA amount) must be involved. Interestingly, the varia-
tion in species with sufficiently large distribution range (2x A. alpinum, 4x A. odoratum, and
the “Mediterranean diploid”) showed a clinal trend, reflecting mainly their positions along a
latitudinal gradient (Table 2, S1 Fig). Because nuclear genome size of may affect several pheno-
typic and developmental characteristics irrespective of the information coded in the DNA (i.e.,
the nucleotypic effect; [71]), we speculate that the variation we found in nuclear genome size
represents adaptation to different environmental conditions. Indeed, such adaptation may
underlie correlations between genome size and abiotic conditions (namely latitude and alti-
tude) found in several grass genera, including Dactylis [72–73], Festuca [67], Koeleria [66] and
Zea [74].

The unusually large and continuous variation in nuclear genome size in the A. aristatum/
ovatum complex was obviously caused by a combined effect of polymorphism in the number
and size of somatic chromosomes, and possibly also by the complex evolutionary history of
the group (e.g. introgressive hybridization; [36,48]). We found not only inter-population but
also intra-population variation (reaching up to 56% in pop. FR11 and to 37% in pop. ES09,
where the chromosomal counts 2n = 10, 2n = 15 and 2n = 16 were found; S1 Table) in A. aris-
tatum/ovatum. While at least some samples of A. aristatum/ovatum with the greatest DNA
amount were triploid (either euploid, 2n = 15, or euploid, 2n = 16; Table 1), large variation
(28.5%) persisted even when only plants confirmed to have ten somatic chromosomes were
compared (Fig 3A). Considering the maximum genome size heterogeneity reported in other
angiosperms (e.g., 17% in Festuca pallens: [67], 18% in Allium oleraceum: [75], 22% in
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Taraxacum stenocephalum: [76], and 37% in Picris hieracioides: [68], the variation revealed in
A. aristatum/ovatum is unusually large.

Despite the considerable intraspecific variation, the value of genome size as a taxonomic
marker is not compromised, and all European species of Anthoxanthum can be identified
based on the combination of life cycle (annual/perennial) and nuclear genome size (Table 1).
Moreover, species with similar amounts of nuclear DNA (e.g., A.maderense and the “Mediter-
ranean diploid”) are separated geographically.
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S1 Appendix. Pictures of representative plant vouchers of all species.
(PDF)
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ovatum (G-H) Anthoxanthum gracile.
(PDF)

S1 Fig. Scatter plot showing relationships between population distribution data (latitude,
longitude and altitude) and holoploid genome sizes (2C-values) for three species with suffi-
ciently large geographic ranges. (A) 2x Anthoxanthum alpinum; (B) “Mediterranean diploid”;
(C) 4x Anthoxanthum odoratum.
(TIF)

S1 Table. List of analysed Anthoxanthum populations (sorted by ploidy level and holoploid
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